IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v191y2008i1p223-239.html
   My bibliography  Save this article

A hypercube queueing loss model with customer-dependent service rates

Author

Listed:
  • Atkinson, J.B.
  • Kovalenko, I.N.
  • Kuznetsov, N.
  • Mykhalevych, K.V.

Abstract

This paper is concerned with the solution of a specific hypercube queueing model. It extends the work that was described in a related paper by Atkinson et al. [Atkinson, J.B., Kovalenko, I.N., Kuznetsov, N., Mykhalevych, K.V., 2006. Heuristic methods for the analysis of a queuing system describing emergency medical services deployed along a highway. Cybernetics & Systems Analysis, 42, 379-391], which investigated a model for deploying emergency services along a highway. The model is based on the servicing of customer demands that arise in a number of distinct geographical zones, or atoms. Service is provided by servers that are positioned at a number of bases, each having a fixed geographical location along the highway. At each base a single server is available. Demands arising in any atom have a first-preference base and a second-preference base. If the first-preference base is busy, service is provided by the second-preference base; and, if both bases are busy, the demand is lost. In practice, because of differences in travel times from the first and second-preference bases to the atom in question, the service rate may be significantly different in the two cases. The model studied here allows for such customer-dependent service rates to occur, and the corresponding hypercube model has 3n states, where n is the number of bases. The computational intractability of this model means that exact solutions for the long-run proportion of lost demands (ploss) can be obtained only for small values of n. In this paper, we propose two heuristic methods and a simulation approach for approximating ploss. The heuristics are shown to produce very accurate estimates of ploss.

Suggested Citation

  • Atkinson, J.B. & Kovalenko, I.N. & Kuznetsov, N. & Mykhalevych, K.V., 2008. "A hypercube queueing loss model with customer-dependent service rates," European Journal of Operational Research, Elsevier, vol. 191(1), pages 223-239, November.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:1:p:223-239
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00885-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard C. Larson, 1975. "Approximating the Performance of Urban Emergency Service Systems," Operations Research, INFORMS, vol. 23(5), pages 845-868, October.
    2. Jonathan Halpern, 1977. "The Accuracy of Estimates for the Performance Criteria in Certain Emergency Service Queueing Systems," Transportation Science, INFORMS, vol. 11(3), pages 223-242, August.
    3. Richard A. Volz, 1971. "Optimum Ambulance Location in Semi-Rural Areas," Transportation Science, INFORMS, vol. 5(2), pages 193-203, May.
    4. S I Harewood, 2002. "Emergency ambulance deployment in Barbados: a multi-objective approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(2), pages 185-192, February.
    5. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    6. Burwell, Timothy H. & McKnew, Mark A. & Jarvis, James P., 1992. "An application of a spatially distributed queuing model to an ambulance system," Socio-Economic Planning Sciences, Elsevier, vol. 26(4), pages 289-300, October.
    7. F C Mendonça & R Morabito, 2001. "Analysing emergency medical service ambulance deployment on a Brazilian highway using the hypercube model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 261-270, March.
    8. Kenneth R. Chelst & Ziv Barlach, 1981. "Multiple Unit Dispatches in Emergency Services: Models to Estimate System Performance," Management Science, INFORMS, vol. 27(12), pages 1390-1409, December.
    9. Arthur J. Swersey & Louis Goldring & Earl D. Geyer, 1993. "Improving Fire Department Productivity: Merging Fire and Emergency Medical Units in New Haven," Interfaces, INFORMS, vol. 23(1), pages 109-129, February.
    10. Iannoni, Ana Paula & Morabito, Reinaldo, 2007. "A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 755-771, November.
    11. Fujiwara, Okitsugu & Makjamroen, Thanet & Gupta, Kapil Kumar, 1987. "Ambulance deployment analysis: A case study of Bangkok," European Journal of Operational Research, Elsevier, vol. 31(1), pages 9-18, July.
    12. Richard C. Larson & Mark A. Mcknew, 1982. "Police Patrol-Initiated Activities Within a Systems Queueing Model," Management Science, INFORMS, vol. 28(7), pages 759-774, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    2. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    3. Sun Hoon Kim & Young Hoon Lee, 2016. "Iterative optimization algorithm with parameter estimation for the ambulance location problem," Health Care Management Science, Springer, vol. 19(4), pages 362-382, December.
    4. Akbar Karimi & Michel Gendreau & Vedat Verter, 2018. "Performance Approximation of Emergency Service Systems with Priorities and Partial Backups," Transportation Science, INFORMS, vol. 52(5), pages 1235-1252, October.
    5. Erdemir, Elif Tokar & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2010. "Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach," European Journal of Operational Research, Elsevier, vol. 207(2), pages 736-749, December.
    6. Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
    7. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    8. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iannoni, Ana P. & Morabito, Reinaldo, 2023. "A review on hypercube queuing model's extensions for practical applications," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
    3. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    4. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.
    5. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    6. Iannoni, Ana Paula & Chiyoshi, Fernando & Morabito, Reinaldo, 2015. "A spatially distributed queuing model considering dispatching policies with server reservation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 49-66.
    7. Morabito, Reinaldo & Chiyoshi, Fernando & Galvão, Roberto D., 2008. "Non-homogeneous servers in emergency medical systems: Practical applications using the hypercube queueing model," Socio-Economic Planning Sciences, Elsevier, vol. 42(4), pages 255-270, December.
    8. de Souza, Regiane Máximo & Morabito, Reinaldo & Chiyoshi, Fernando Y. & Iannoni, Ana Paula, 2015. "Incorporating priorities for waiting customers in the hypercube queuing model with application to an emergency medical service system in Brazil," European Journal of Operational Research, Elsevier, vol. 242(1), pages 274-285.
    9. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.
    10. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    11. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    12. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    13. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    14. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    15. Erdemir, Elif Tokar & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2010. "Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach," European Journal of Operational Research, Elsevier, vol. 207(2), pages 736-749, December.
    16. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    17. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    18. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    19. Soo-Haeng Cho & Hoon Jang & Taesik Lee & John Turner, 2014. "Simultaneous Location of Trauma Centers and Helicopters for Emergency Medical Service Planning," Operations Research, INFORMS, vol. 62(4), pages 751-771, August.
    20. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:1:p:223-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.