IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Priority Assignment Under Imperfect Information on Customer Type Identities

Listed author(s):
  • Nilay Tan{\i}k Argon


    (Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599)

  • Serhan Ziya


    (Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599)

Registered author(s):

    In many service systems, customers are not served in the order they arrive, but according to a priority scheme that ranks them with respect to their relative "importance." However, it may not be an easy task to determine the importance level of customers, especially when decisions need to be made under limited information. A typical example is from health care: When triage nurses classify patients into different priority groups, they must promptly determine each patient's criticality levels with only partial information on their conditions. We consider such a service system where customers are from one of two possible types. The service time and waiting cost for a customer depends on the customer's type. Customers' type identities are not directly available to the service provider; however, each customer provides a signal, which is an imperfect indicator of the customer's identity. The service provider uses these signals to determine priority levels for the customers with the objective of minimizing the long-run average waiting cost. In most of the paper, each customer's signal equals the probability that the customer belongs to the type that should have a higher priority and customers incur waiting costs that are linear in time. We first show that increasing the number of priority classes decreases costs, and the policy that gives the highest priority to the customer with the highest signal outperforms any finite class priority policy. We then focus on two-class priority policies and investigate how the optimal policy changes with the system load. We also investigate the properties of "good" signals and find that signals that are larger in convex ordering are more preferable. In a simulation study, we find that when the waiting cost functions are nondecreasing, quadratic, and convex, the policy that assigns the highest priority to the customer with the highest signal performs poorly while the two-class priority policy and an extension of the generalized c\mu rule perform well.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Article provided by INFORMS in its journal Manufacturing & Service Operations Management.

    Volume (Year): 11 (2009)
    Issue (Month): 4 (June)
    Pages: 674-693

    in new window

    Handle: RePEc:inm:ormsom:v:11:y:2009:i:4:p:674-693
    Contact details of provider: Postal:
    7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Linda Green, 1984. "A Multiple Dispatch Queueing Model of Police Patrol Operations," Management Science, INFORMS, vol. 30(6), pages 653-664, June.
    2. Linda Green & Peter Kolesar, 1984. "A Comparison of the Multiple Dispatch and M/M/c Priority Queueing Models of Police Patrol," Management Science, INFORMS, vol. 30(6), pages 665-670, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:11:y:2009:i:4:p:674-693. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.