IDEAS home Printed from
   My bibliography  Save this article

Priority Assignment Under Imperfect Information on Customer Type Identities


  • Nilay Tan{i}k Argon

    () (Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599)

  • Serhan Ziya

    () (Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599)


In many service systems, customers are not served in the order they arrive, but according to a priority scheme that ranks them with respect to their relative "importance." However, it may not be an easy task to determine the importance level of customers, especially when decisions need to be made under limited information. A typical example is from health care: When triage nurses classify patients into different priority groups, they must promptly determine each patient's criticality levels with only partial information on their conditions. We consider such a service system where customers are from one of two possible types. The service time and waiting cost for a customer depends on the customer's type. Customers' type identities are not directly available to the service provider; however, each customer provides a signal, which is an imperfect indicator of the customer's identity. The service provider uses these signals to determine priority levels for the customers with the objective of minimizing the long-run average waiting cost. In most of the paper, each customer's signal equals the probability that the customer belongs to the type that should have a higher priority and customers incur waiting costs that are linear in time. We first show that increasing the number of priority classes decreases costs, and the policy that gives the highest priority to the customer with the highest signal outperforms any finite class priority policy. We then focus on two-class priority policies and investigate how the optimal policy changes with the system load. We also investigate the properties of "good" signals and find that signals that are larger in convex ordering are more preferable. In a simulation study, we find that when the waiting cost functions are nondecreasing, quadratic, and convex, the policy that assigns the highest priority to the customer with the highest signal performs poorly while the two-class priority policy and an extension of the generalized c\mu rule perform well.

Suggested Citation

  • Nilay Tan{i}k Argon & Serhan Ziya, 2009. "Priority Assignment Under Imperfect Information on Customer Type Identities," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 674-693, June.
  • Handle: RePEc:inm:ormsom:v:11:y:2009:i:4:p:674-693

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Linda Green, 1984. "A Multiple Dispatch Queueing Model of Police Patrol Operations," Management Science, INFORMS, vol. 30(6), pages 653-664, June.
    2. Linda Green & Peter Kolesar, 1984. "A Comparison of the Multiple Dispatch and M/M/c Priority Queueing Models of Police Patrol," Management Science, INFORMS, vol. 30(6), pages 665-670, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:spr:queues:v:87:y:2017:i:1:d:10.1007_s11134-017-9537-y is not listed on IDEAS
    2. Li, Dong & Glazebrook, Kevin D., 2011. "A Bayesian approach to the triage problem with imperfect classification," European Journal of Operational Research, Elsevier, vol. 215(1), pages 169-180, November.
    3. repec:spr:annopr:v:236:y:2016:i:1:d:10.1007_s10479-014-1716-1 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:11:y:2009:i:4:p:674-693. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.