IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v221y2014i1p9-3110.1007-s10479-012-1275-2.html
   My bibliography  Save this article

Location-allocation models for traffic police patrol vehicles on an interurban network

Author

Listed:
  • Nicole Adler
  • Alfred Hakkert
  • Jonathan Kornbluth
  • Tal Raviv
  • Mali Sher

Abstract

This research investigates the traffic police routine patrol vehicle (RPV) assignment problem on an interurban road network through a series of integer linear programs. The traffic police RPV’s main task, like other emergency services, is to handle calls-for-service. Emergency services allocation models are generally based on the shortest path algorithm however, the traffic police RPV also handles other roles, namely patrolling to create a presence that acts as a deterrence, and issuing tickets to offenders. The RPVs need to be located dynamically on both hazardous sections and on roads with heavy traffic in order to increase their presence and conspicuousness, in an attempt to prevent or reduce traffic offences, road accidents and traffic congestion. Due to the importance of the traffic patrol vehicle’s location with regard to their additional roles, allocation of the RPVs adheres to an exogenous, legal, time-to-arrival constraint. We develop location-allocation models and apply them to a case study of the road network in northern Israel. The results of the four models are compared to each other and in relation to the current chosen locations. The multiple formulations provide alternatives that jointly account for road safety and policing objectives which aid decision-makers in the selection of their preferred RPV assignments. The results of the models present a location-allocation configuration per RPV per shift with full call-for-service coverage whilst maximizing police presence and conspicuousness as a proxy for road safety. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Nicole Adler & Alfred Hakkert & Jonathan Kornbluth & Tal Raviv & Mali Sher, 2014. "Location-allocation models for traffic police patrol vehicles on an interurban network," Annals of Operations Research, Springer, vol. 221(1), pages 9-31, October.
  • Handle: RePEc:spr:annopr:v:221:y:2014:i:1:p:9-31:10.1007/s10479-012-1275-2
    DOI: 10.1007/s10479-012-1275-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1275-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1275-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    2. Tsai, Jung-Fa & Lin, Ming-Hua & Hu, Yi-Chung, 2008. "Finding multiple solutions to general integer linear programs," European Journal of Operational Research, Elsevier, vol. 184(2), pages 802-809, January.
    3. Gary S. Becker, 1974. "Crime and Punishment: An Economic Approach," NBER Chapters, in: Essays in the Economics of Crime and Punishment, pages 1-54, National Bureau of Economic Research, Inc.
    4. W J Hurley & J Brimberg & A Pavlov, 2009. "Optimal thresholds for fining speeders for a stationary speed-check operation when the traffic intensity is low," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1154-1159, September.
    5. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    6. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    7. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    8. Mark Daskin & Collette Coullard & Zuo-Jun Shen, 2002. "An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results," Annals of Operations Research, Springer, vol. 110(1), pages 83-106, February.
    9. Jan M. Chaiken & Peter Dormont, 1978. "A Patrol Car Allocation Model: Capabilities and Algorithms," Management Science, INFORMS, vol. 24(12), pages 1291-1300, August.
    10. Jan M. Chaiken & Peter Dormont, 1978. "A Patrol Car Allocation Model: Background," Management Science, INFORMS, vol. 24(12), pages 1280-1290, August.
    11. Kevin Curtin & Karen Hayslett-McCall & Fang Qiu, 2010. "Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models," Networks and Spatial Economics, Springer, vol. 10(1), pages 125-145, March.
    12. Frank Plastria & Lieselot Vanhaverbeke, 2007. "Aggregation without Loss of Optimality in Competitive Location Models," Networks and Spatial Economics, Springer, vol. 7(1), pages 3-18, March.
    13. Yafeng Yin, 2006. "Optimal Fleet Allocation of Freeway Service Patrols," Networks and Spatial Economics, Springer, vol. 6(3), pages 221-234, September.
    14. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    15. Richard C. Larson & Mark A. Mcknew, 1982. "Police Patrol-Initiated Activities Within a Systems Queueing Model," Management Science, INFORMS, vol. 28(7), pages 759-774, July.
    16. Linda Green & Peter Kolesar, 1989. "Testing the Validity of a Queueing Model of Police Patrol," Management Science, INFORMS, vol. 35(2), pages 127-148, February.
    17. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1063-1106, September.
    2. Soumendra Nath Sanyal & Izabela Nielsen & Subrata Saha, 2020. "Multi-Objective Human Resource Allocation Approach for Sustainable Traffic Management," IJERPH, MDPI, vol. 17(7), pages 1-16, April.
    3. Marina Baltar & Victor Abreu & Glaydston Ribeiro & Laura Bahiense, 2021. "Multi-objective model for the problem of locating tows for incident servicing on expressways," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 58-77, April.
    4. Ramon Auad & Rajan Batta, 2017. "Location-coverage models for preventing attacks on interurban transportation networks," Annals of Operations Research, Springer, vol. 258(2), pages 679-717, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    2. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1063-1106, September.
    3. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    4. Ramon Auad & Rajan Batta, 2017. "Location-coverage models for preventing attacks on interurban transportation networks," Annals of Operations Research, Springer, vol. 258(2), pages 679-717, November.
    5. Nagarajan, Magesh & Shaw, Duncan & Albores, Pavel, 2012. "Disseminating a warning message to evacuate: A simulation study of the behaviour of neighbours," European Journal of Operational Research, Elsevier, vol. 220(3), pages 810-819.
    6. Schuster Puga, Matías & Tancrez, Jean-Sébastien, 2017. "A heuristic algorithm for solving large location–inventory problems with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 259(2), pages 413-423.
    7. Soo-Haeng Cho & Hoon Jang & Taesik Lee & John Turner, 2014. "Simultaneous Location of Trauma Centers and Helicopters for Emergency Medical Service Planning," Operations Research, INFORMS, vol. 62(4), pages 751-771, August.
    8. Schuster Puga, Matías & Minner, Stefan & Tancrez, Jean-Sébastien, 2019. "Two-stage supply chain design with safety stock placement decisions," International Journal of Production Economics, Elsevier, vol. 209(C), pages 183-193.
    9. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    10. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    11. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    12. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    13. Hoon Jang, 2019. "Designing capacity rollout plan for neonatal care service system in Korea," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 809-830, September.
    14. Ting L. Lei & Richard L. Church, 2014. "Vector Assignment Ordered Median Problem," International Regional Science Review, , vol. 37(2), pages 194-224, April.
    15. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    16. McLay, Laura A. & Boone, Edward L. & Brooks, J. Paul, 2012. "Analyzing the volume and nature of emergency medical calls during severe weather events using regression methodologies," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 55-66.
    17. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    18. Renata Turkeš & Kenneth Sörensen & Daniel Palhazi Cuervo, 2021. "A matheuristic for the stochastic facility location problem," Journal of Heuristics, Springer, vol. 27(4), pages 649-694, August.
    19. Hall, Randolph, 2000. "Incident Dispatching, Clearance and Delay," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2pp689vn, Institute of Transportation Studies, UC Berkeley.
    20. Huang, Kai & Jiang, Yiping & Yuan, Yufei & Zhao, Lindu, 2015. "Modeling multiple humanitarian objectives in emergency response to large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:221:y:2014:i:1:p:9-31:10.1007/s10479-012-1275-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.