IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v106y2021ics0095069620301285.html
   My bibliography  Save this article

Effectiveness of climate policies: Carbon pricing vs. subsidizing renewables

Author

Listed:
  • Gugler, Klaus
  • Haxhimusa, Adhurim
  • Liebensteiner, Mario

Abstract

Most but not all economists view carbon pricing as most effective to combat carbon emissions, whereas other policies are widely applied and highly debated. We quantify the effectiveness of climate policies in the form of pricing carbon and subsidizing renewable energies for Germany's and Britain's power sectors. While Germany relies on heavy subsidies for renewables but on a weak price for carbon certificates (EUA) from the EU Emission Trading System (ETS), its emissions hardly declined. To underpin the low EUA price, Britain introduced a unilateral tax on power sector emissions, the Carbon Price Support (CPS). Within only five years, carbon emissions declined by 55%. Our results demonstrate that in the power sector, even a modest carbon price (∼€30/tCO2) can induce significant abatement at low costs within a short period as long as “cleaner” gas plants exist to replace “dirty” coal plants. We also find that carbon pricing is superior to subsidizing wind or solar power in these two countries.

Suggested Citation

  • Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2021. "Effectiveness of climate policies: Carbon pricing vs. subsidizing renewables," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
  • Handle: RePEc:eee:jeeman:v:106:y:2021:i:c:s0095069620301285
    DOI: 10.1016/j.jeem.2020.102405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069620301285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2020.102405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalia Fabra & Mar Reguant, 2014. "Pass-Through of Emissions Costs in Electricity Markets," American Economic Review, American Economic Association, vol. 104(9), pages 2872-2899, September.
    2. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    3. Harrison Fell, Beat Hintermann, and Herman Vollebergh, 2015. "Carbon content of electricity futures in Phase II of the EU ETS," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    4. Guo, Bowei & Castagneto Gissey, Giorgio, 2021. "Cost pass-through in the British wholesale electricity market," Energy Economics, Elsevier, vol. 102(C).
    5. Grossi, Luigi & Heim, Sven & Waterson, Michael, 2017. "The impact of the German response to the Fukushima earthquake," Energy Economics, Elsevier, vol. 66(C), pages 450-465.
    6. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    7. Daniel Rosenbloom & Jochen Markard & Frank W. Geels & Lea Fuenfschilling, 2020. "Opinion: Why carbon pricing is not sufficient to mitigate climate change—and how “sustainability transition policy” can help," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(16), pages 8664-8668, April.
    8. Germeshausen, Robert & Wölfing, Nikolas, 2020. "How marginal is lignite? Two simple approaches to determine price-setting technologies in power markets," Energy Policy, Elsevier, vol. 142(C).
    9. Marshall Burke & John Dykema & David B. Lobell & Edward Miguel & Shanker Satyanath, 2015. "Incorporating Climate Uncertainty into Estimates of Climate Change Impacts," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 461-471, May.
    10. David M. Newbery, David M. Reiner, and Robert A. Ritz, 2019. "The Political Economy of a Carbon Price Floor for Power Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Bowei Guo & Giorgio Castagneto Gissey, 2019. "Cost Pass-through in the British Wholesale Electricity Market: Implications of Brexit and the ETS reform," Working Papers EPRG1937, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    13. Dagoumas, Athanasios S. & Polemis, Michael L., 2020. "Carbon pass-through in the electricity sector: An econometric analysis," Energy Economics, Elsevier, vol. 86(C).
    14. Linn, Joshua & Muehlenbachs, Lucija, 2018. "The heterogeneous impacts of low natural gas prices on consumers and the environment," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 1-28.
    15. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario & Schindler, Nora, 2020. "Investment opportunities, uncertainty, and renewables in European electricity markets," Energy Economics, Elsevier, vol. 85(C).
    16. Joseph A. Cullen & Erin T. Mansur, 2017. "Inferring Carbon Abatement Costs in Electricity Markets: A Revealed Preference Approach Using the Shale Revolution," American Economic Journal: Economic Policy, American Economic Association, vol. 9(3), pages 106-133, August.
    17. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
    18. Harrison Fell & Daniel T. Kaffine, 2018. "The Fall of Coal: Joint Impacts of Fuel Prices and Renewables on Generation and Emissions," American Economic Journal: Economic Policy, American Economic Association, vol. 10(2), pages 90-116, May.
    19. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    20. Beat Hintermann, 2016. "Pass-Through of CO2 Emission Costs to Hourly Electricity Prices in Germany," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 857-891.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    2. Barbara Annicchiarico & Marco Carli & Francesca Diluiso, 2022. "Climate Policies, Macroprudential Regulation, and the Welfare Cost of Business Cycles," CEIS Research Paper 543, Tor Vergata University, CEIS, revised 31 Oct 2022.
    3. Wu, Jie & Fan, Ying & Timilsina, Govinda & Xia, Yan, 2022. "Exploiting Complementarity of Carbon Pricing Instruments for Low-Carbon Development in the People’s Republic of China," ADBI Working Papers 1329, Asian Development Bank Institute.
    4. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    5. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    6. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    7. Haxhimusa, Adhurim & Liebensteiner, Mario, 2021. "Effects of electricity demand reductions under a carbon pricing regime on emissions: lessons from COVID-19," Energy Policy, Elsevier, vol. 156(C).
    8. Hänsel, Martin C. & Franks, Max & Kalkuhl, Matthias & Edenhofer, Ottmar, 2022. "Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    9. Abeer Elshennawy & Dirk Willenbockel, 2021. "The Effect of a Carbon Tax on The Egyptian Economy: A General Equilibrium Analysis," Working Papers 1525, Economic Research Forum, revised 20 Dec 2021.
    10. Anderson, Brilé & Cammeraat, Emile & Dechezleprêtre, Antoine & Dressler, Luisa & Gonne, Nicolas & Lalanne, Guy & Martins Guilhoto, Joaquim & Theodoropoulos, Konstantinos, 2023. "Designing policy packages for a climate-neutral industry: A case study from the Netherlands," Ecological Economics, Elsevier, vol. 205(C).
    11. Marion Leroutier, 2021. "Carbon Pricing and Power Sector Decarbonisation: Evidence from the UK," Working Papers halshs-03265636, HAL.
    12. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    13. Liebensteiner, Mario & Naumann, Fabian, 2022. "Can carbon pricing counteract renewable energies’ cannibalization problem?," Energy Economics, Elsevier, vol. 115(C).
    14. Justus Haucap & Jürgen Kühling & Munib Amin & Gert Brunekreeft & Dörte Fouquet & Veronika Grimm & Jörg Gundel & Martin Kment & Wolfgang Ketter & Jochen Kreusel & Charlotte Kreuter-Kirchhof & Mario Lie, 2022. "Erneuerbare Energien effizient und wirksam fördern [Promote Renewable Energies Efficiently and Effectively]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(9), pages 694-702, September.
    15. Christian Lutz & Lisa Becker & Andreas Kemmler, 2021. "Socioeconomic Effects of Ambitious Climate Mitigation Policies in Germany," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    16. Du, Gang & Li, Wendi, 2022. "Does innovative city building promote green logistics efficiency? Evidence from a quasi-natural experiment with 285 cities," Energy Economics, Elsevier, vol. 114(C).
    17. Yue, Xianghua & Peng, Michael Yao-Ping & Anser, Muhammad Khalid & Nassani, Abdelmohsen A. & Haffar, Mohamed & Zaman, Khalid, 2022. "The role of carbon taxes, clean fuels, and renewable energy in promoting sustainable development: How green is nuclear energy?," Renewable Energy, Elsevier, vol. 193(C), pages 167-178.
    18. Abrell, Jan & Kosch, Mirjam, 2022. "Cross-country spillovers of renewable energy promotion—The case of Germany," Resource and Energy Economics, Elsevier, vol. 68(C).
    19. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    20. Xinyu Wu & Xuebao Yin & Xueting Mei, 2022. "Forecasting the Volatility of European Union Allowance Futures with Climate Policy Uncertainty Using the EGARCH-MIDAS Model," Sustainability, MDPI, vol. 14(7), pages 1-13, April.
    21. Marion Leroutier, 2021. "Carbon Pricing and Power Sector Decarbonisation: Evidence from the UK," CIRED Working Papers halshs-03265636, HAL.
    22. Grebel, Thomas & Islam, Rohidul, 2022. "Endogenous cap reduction in Emission Trading Systems," Ilmenau Economics Discussion Papers 169, Ilmenau University of Technology, Institute of Economics.
    23. Liebensteiner, Mario & Haxhimusa, Adhurim & Naumann, Fabian, 2023. "Subsidized renewables’ adverse effect on energy storage and carbon pricing as a potential remedy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    24. Chapman, Andrew & Shigetomi, Yosuke & Karmaker, Shamal Chandra & Saha, Bidyut & Brooks, Caleb, 2022. "Cultural and demographic energy system awareness and preference: Implications for future energy system design in the United States," Energy Economics, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    2. Klaus Gugler & Adhurim Haxhimusa & Mario Liebensteiner, 2019. "Effective Climate Policy Doesn’t Have to be Expensive," Department of Economics Working Papers wuwp293, Vienna University of Economics and Business, Department of Economics.
    3. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    4. Linn, Joshua & Muehlenbachs, Lucija, 2018. "The heterogeneous impacts of low natural gas prices on consumers and the environment," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 1-28.
    5. Nathaly M Rivera & Cristobal Ruiz Tagle, Elisheba Spiller, 2021. "The Health Benefits of Solar Power Generation: Evidence from Chile," Working Papers, Department of Economics 2021_04, University of São Paulo (FEA-USP).
    6. Liebensteiner, Mario & Haxhimusa, Adhurim & Naumann, Fabian, 2023. "Subsidized renewables’ adverse effect on energy storage and carbon pricing as a potential remedy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Brehm, Paul, 2019. "Natural gas prices, electric generation investment, and greenhouse gas emissions," Resource and Energy Economics, Elsevier, vol. 58(C).
    8. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    9. Dechezleprêtre, Antoine & Nachtigall, Daniel & Venmans, Frank, 2023. "The joint impact of the European Union emissions trading system on carbon emissions and economic performance," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    10. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    11. Jonathan E. Hughes & Ian Lange, 2020. "Who (Else) Benefits From Electricity Deregulation? Coal Prices, Natural Gas, And Price Discrimination," Economic Inquiry, Western Economic Association International, vol. 58(3), pages 1053-1075, July.
    12. Bai, Yiyi & Okullo, Samuel J., 2023. "Drivers and pass-through of the EU ETS price: Evidence from the power sector," Energy Economics, Elsevier, vol. 123(C).
    13. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    14. Harding, Matthew & Kettler, Kyle & Lamarche, Carlos & Ma, Lala, 2023. "The (alleged) environmental and social benefits of dynamic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 574-593.
    15. Petersen, Claire & Reguant, Mar & Segura, Lola, 2024. "Measuring the impact of wind power and intermittency," Energy Economics, Elsevier, vol. 129(C).
    16. Mar Reguant, 2018. "The Efficiency and Sectoral Distributional Implications of Large-Scale Renewable Policies," NBER Working Papers 24398, National Bureau of Economic Research, Inc.
    17. Knittel, Christopher R. & Metaxoglou, Konstantinos & Trindade, André, 2019. "Environmental implications of market structure: Shale gas and electricity markets," International Journal of Industrial Organization, Elsevier, vol. 63(C), pages 511-550.
    18. Moritz Bohland & Sebastian Schwenen, 2020. "Technology Policy and Market Structure: Evidence from the Power Sector," Discussion Papers of DIW Berlin 1856, DIW Berlin, German Institute for Economic Research.
    19. Bowei Guo & Giorgio Castagneto Gissey, 2019. "Cost Pass-through in the British Wholesale Electricity Market: Implications of Brexit and the ETS reform," Working Papers EPRG1937, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.

    More about this item

    Keywords

    Climate change policy; Carbon price; EU ETS; Carbon price support; Subsidization of renewables;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
    • Q35 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Hydrocarbon Resources
    • Q38 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Government Policy (includes OPEC Policy)
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:106:y:2021:i:c:s0095069620301285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.