IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v78y2011i3p229-245.html
   My bibliography  Save this article

Beyond replicator dynamics: Innovation-selection dynamics and optimal diversity

Author

Listed:
  • Safarzynska, Karolina
  • van den Bergh, Jeroen C.J.M.

Abstract

We propose a new evolutionary approach to model technological change based on an extension of replicator dynamics with recombination and mutation. It gives rise to interactive innovation-selection dynamics. The model allows studying the combined effects of selection and variety generation on evolutionary-economic change. The developed framework describes a population of boundedly rational entrepreneurs who decide each period on the allocation of investments in different production technologies. They tend to invest in below-average cost technologies, just as under replicator dynamics. In addition, they spend a constant fraction of investments, captured by mutation and recombination rates, on alternative technologies and research on recombinant innovation. As opposed to most previous studies, mutation and recombination are here conceptual variables with a concrete behavioral interpretation, namely describing the decision rules (heuristics) of investors. We compare the dynamics of shares of investments in various technologies for three cases: with constant costs of capital, with costs decreasing steadily and exogenously over time, and with costs depending on the level of cumulative investments. For each model version, we examine under which conditions the coexistence of technological options is feasible and optimal in terms of minimizing the average cost of investments.

Suggested Citation

  • Safarzynska, Karolina & van den Bergh, Jeroen C.J.M., 2011. "Beyond replicator dynamics: Innovation-selection dynamics and optimal diversity," Journal of Economic Behavior & Organization, Elsevier, vol. 78(3), pages 229-245, May.
  • Handle: RePEc:eee:jeborg:v:78:y:2011:i:3:p:229-245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268111000229
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yildizoglu, Murat, 2002. "Competing R&D Strategies in an Evolutionary Industry Model," Computational Economics, Springer;Society for Computational Economics, vol. 19(1), pages 51-65, February.
    2. Karolina Safarzynska & Jeroen C.J.M. van den Bergh, 2008. "Evolutionary Modelling in Economics: A Survey of Methods and Building Blocks," Papers on Economics and Evolution 2008-06, Philipps University Marburg, Department of Geography.
    3. Bulut, Harun & Moschini, GianCarlo, 2006. "Patents, trade secrets and the correlation among R&D projects," Economics Letters, Elsevier, vol. 91(1), pages 131-137, April.
    4. Silverberg, Gerald & Lehnert, Doris, 1993. "Long waves and 'evolutionary chaos' in a simple Schumpeterian model of embodied technical change," Structural Change and Economic Dynamics, Elsevier, vol. 4(1), pages 9-37, June.
    5. Silverberg, Gerald & Dosi, Giovanni & Orsenigo, Luigi, 1988. "Innovation, Diversity and Diffusion: A Self-organisation Model," Economic Journal, Royal Economic Society, vol. 98(393), pages 1032-1054, December.
    6. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    7. Paul Windrum & Chris Birchenhall, 2005. "Structural change in the presence of network externalities: a co-evolutionary model of technological successions," Journal of Evolutionary Economics, Springer, vol. 15(2), pages 123-148, January.
    8. Kwasnicki, Witold & Kwasnicka, Halina, 1992. "Market, innovation, competition: An evolutionary model of industrial dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 19(3), pages 343-368, December.
    9. Chris Birchenhall & Nikos Kastrinos & Stan Metcalfe, 1997. "Genetic algorithms in evolutionary modelling," Journal of Evolutionary Economics, Springer, vol. 7(4), pages 375-393.
    10. Dasgupta, Partha & Maskin, Eric, 1987. "The Simple Economics of Research Portfolios," Economic Journal, Royal Economic Society, vol. 97(387), pages 581-595, September.
    11. Bomze Immanuel M. & Burger Reinhard, 1995. "Stability by Mutation in Evolutionary Games," Games and Economic Behavior, Elsevier, vol. 11(2), pages 146-172, November.
    12. Michael Kopel & Herbert Dawid, 1998. "On economic applications of the genetic algorithm: a model of the cobweb type," Journal of Evolutionary Economics, Springer, vol. 8(3), pages 297-315.
    13. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    14. P. Windrum, 2007. "Neo-Schumpeterian Simulation Models," Chapters,in: Elgar Companion to Neo-Schumpeterian Economics, chapter 26 Edward Elgar Publishing.
    15. Olsson, Ola & Frey, Bruno S, 2002. "Entrepreneurship as Recombinant Growth," Small Business Economics, Springer, vol. 19(2), pages 69-80, September.
    16. Canning, David, 1992. "Average behavior in learning models," Journal of Economic Theory, Elsevier, vol. 57(2), pages 442-472, August.
    17. Windrum, Paul & Birchenhall, Chris, 1998. "Is product life cycle theory a special case? Dominant designs and the emergence of market niches through coevolutionary-learning," Structural Change and Economic Dynamics, Elsevier, vol. 9(1), pages 109-134, March.
    18. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    19. Iwai, Katsuhito, 1984. "Schumpeterian dynamics, Part II : Technological progress, firm growth and `economic selection'," Journal of Economic Behavior & Organization, Elsevier, vol. 5(3-4), pages 321-351.
    20. Martin L. Weitzman, 1998. "Recombinant Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 113(2), pages 331-360.
    21. R. Aversi & G. Dosi & G. Fagiolo & M. Meacci & C. Olivetti, 1997. "Demand Dynamics With Socially Evolving Preferences," Working Papers ir97081, International Institute for Applied Systems Analysis.
    22. Iwai, Katsuhito, 1984. "Schumpeterian dynamics : An evolutionary model of innovation and imitation," Journal of Economic Behavior & Organization, Elsevier, vol. 5(2), pages 159-190, June.
    23. van den Bergh, Jeroen C.J.M., 2008. "Optimal diversity: Increasing returns versus recombinant innovation," Journal of Economic Behavior & Organization, Elsevier, vol. 68(3-4), pages 565-580, December.
    24. Miller, John H., 1996. "The coevolution of automata in the repeated Prisoner's Dilemma," Journal of Economic Behavior & Organization, Elsevier, vol. 29(1), pages 87-112, January.
    25. Saviotti, P P & Mani, G S, 1995. "Competition, Variety and Technological Evolution: A Replicator Dynamics Model," Journal of Evolutionary Economics, Springer, vol. 5(4), pages 369-392, December.
    26. Pier Saviotti & Andreas Pyka, 2004. "Economic development by the creation of new sectors," Journal of Evolutionary Economics, Springer, vol. 14(1), pages 1-35, January.
    27. Karolina Safarzyńska & Jeroen Bergh, 2010. "Evolutionary models in economics: a survey of methods and building blocks," Journal of Evolutionary Economics, Springer, vol. 20(3), pages 329-373, June.
    28. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    29. Tsur, Yacov & Zemel, Amos, 2007. "Towards endogenous recombinant growth," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3459-3477, November.
    30. Granstrand, Ove, 1998. "Towards a theory of the technology-based firm1," Research Policy, Elsevier, vol. 27(5), pages 465-489, September.
    31. H. Peyton Young, 1996. "The Economics of Convention," Journal of Economic Perspectives, American Economic Association, vol. 10(2), pages 105-122, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marchese, Carla & Marsiglio, Simone & Privileggi, Fabio & Ramello, Giovanni, 2014. "Endogenous Recombinant Growth through Market Production of Knowledge and Intellectual Property Rights," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201413, University of Turin.
    2. Wood, Aaron D. & Mason, Charles F. & Finnoff, David, 2016. "OPEC, the Seven Sisters, and oil market dominance: An evolutionary game theory and agent-based modeling approach," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 66-78.
    3. Jacob Rubæk Holm & Esben Sloth Andersen & J. Stanley Metcalfe, 2016. "Confounded, augmented and constrained replicator dynamics," Journal of Evolutionary Economics, Springer, vol. 26(4), pages 803-822, October.
    4. Paolo Zeppini & Koen Frenken & Roland Kupers, 2013. "Threshold models of technological transitions," Working Papers 13-06, Eindhoven Center for Innovation Studies, revised Aug 2013.
    5. Salvador Pueyo, 2014. "Ecological Econophysics for Degrowth," Sustainability, MDPI, Open Access Journal, vol. 6(6), pages 1-53, May.
    6. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    7. Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
    8. Jan-Dirk Schmöcker & Tsuyoshi Hatori & David Watling, 2014. "Dynamic process model of mass effects on travel demand," Transportation, Springer, vol. 41(2), pages 279-304, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:78:y:2011:i:3:p:229-245. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jebo .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.