IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v100y2015icp317-329.html
   My bibliography  Save this article

Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents

Author

Listed:
  • Lee, Won Sang
  • Han, Eun Jin
  • Sohn, So Young

Abstract

Understanding technology convergence became crucial for pursuing innovation and economic growth. This paper attempts to predict the pattern of technology convergence by jointly applying the Association Rule and Link Prediction to entire IPCs related to triadic patents filed during the period from 1955 to 2011. We further use a topic model to discover emerging areas of the predicted technology convergence. The results show that the medical area is in the center of convergence, and we predict that technologies for treating respiratory system/blood/sense disorders are associated with the technologies of genetic engineering/peptide/heterocyclic compounds. After eliminating the majority of convergence, we found the convergence pattern among activating catalysts, printing, advanced networking, controlling devices, secured communication with in-memory system, television system with pattern recognition, and image processing and analyzing technologies. The results of our study are expected to contribute to firms that seek new innovative technological domain.

Suggested Citation

  • Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
  • Handle: RePEc:eee:tefoso:v:100:y:2015:i:c:p:317-329
    DOI: 10.1016/j.techfore.2015.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162515002310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2015.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher Lipinski & Andrew Hopkins, 2004. "Navigating chemical space for biology and medicine," Nature, Nature, vol. 432(7019), pages 855-861, December.
    2. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    3. Martin, Ben R. & Nightingale, Paul & Yegros-Yegros, Alfredo, 2012. "Science and technology studies: Exploring the knowledge base," Research Policy, Elsevier, vol. 41(7), pages 1182-1204.
    4. repec:bla:jindec:v:46:y:1998:i:2:p:125-56 is not listed on IDEAS
    5. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    6. Naoki Shibata & Yuya Kajikawa & Ichiro Sakata, 2012. "Link prediction in citation networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(1), pages 78-85, January.
    7. Josh Lerner & Robert P. Merges, 1998. "The Control of Technology Alliances: An Empirical Analysis of the Biotechnology Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 125-156, June.
    8. Blind, Knut & Gauch, Stephan, 2008. "Trends in ICT standards: The relationship between European standardisation bodies and standards consortia," Telecommunications Policy, Elsevier, vol. 32(7), pages 503-513, August.
    9. Rui Li & Tamy Chambers & Ying Ding & Guo Zhang & Liansheng Meng, 2014. "Patent citation analysis: Calculating science linkage based on citing motivation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 1007-1017, May.
    10. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    11. Naoki Shibata & Yuya Kajikawa & Ichiro Sakata, 2012. "Link prediction in citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(1), pages 78-85, January.
    12. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    13. Constant, Edward II, 2002. "Why evolution is a theory about stability: constraint, causation, and ecology in technological change," Research Policy, Elsevier, vol. 31(8-9), pages 1241-1256, December.
    14. Yan, Erjia & Ding, Ying & Milojević, Staša & Sugimoto, Cassidy R., 2012. "Topics in dynamic research communities: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 6(1), pages 140-153.
    15. Xiaojun Hu & Ronald Rousseau & Jin Chen, 2012. "Structural indicators in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 451-460, May.
    16. Baudry, Marc & Dumont, Beatrice, 2006. "Comparing firms' triadic patent applications across countries: Is there a gap in terms of R&D effort or a gap in terms of performances?," Research Policy, Elsevier, vol. 35(2), pages 324-342, March.
    17. Meyer-Krahmer, Frieder & Schmoch, Ulrich, 1998. "Science-based technologies: university-industry interactions in four fields," Research Policy, Elsevier, vol. 27(8), pages 835-851, December.
    18. Phene, Anupama & Almeida, Paul, 2003. "How do firms evolve? The patterns of technological evolution of semiconductor subsidiaries," International Business Review, Elsevier, vol. 12(3), pages 349-367, June.
    19. Bernard, Andrew B & Jones, Charles I, 1996. "Technology and Convergence," Economic Journal, Royal Economic Society, vol. 106(437), pages 1037-1044, July.
    20. Xiaojun Hu & Ronald Rousseau & Jin Chen, 2012. "A new approach for measuring the value of patents based on structural indicators for ego patent citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(9), pages 1834-1842, September.
    21. Roijakkers, Nadine & Hagedoorn, John, 2006. "Inter-firm R&D partnering in pharmaceutical biotechnology since 1975: Trends, patterns, and networks," Research Policy, Elsevier, vol. 35(3), pages 431-446, April.
    22. Safarzynska, Karolina & van den Bergh, Jeroen C.J.M., 2011. "Beyond replicator dynamics: Innovation-selection dynamics and optimal diversity," Journal of Economic Behavior & Organization, Elsevier, vol. 78(3), pages 229-245, May.
    23. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    24. Lee, Sungjoo & Kim, Moon-Soo & Park, Yongtae, 0. "ICT Co-evolution and Korean ICT strategy--An analysis based on patent data," Telecommunications Policy, Elsevier, vol. 33(5-6), pages 253-271, June.
    25. Han, Yoo-Jin & Park, Yongtae, 2006. "Patent network analysis of inter-industrial knowledge flows: The case of Korea between traditional and emerging industries," World Patent Information, Elsevier, vol. 28(3), pages 235-247, September.
    26. Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
    27. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    28. Gress, Bernard, 2010. "Properties of the USPTO patent citation network: 1963-2002," World Patent Information, Elsevier, vol. 32(1), pages 3-21, March.
    29. Iwai, Katsuhito, 2000. "A contribution to the evolutionary theory of innovation, imitation and growth," Journal of Economic Behavior & Organization, Elsevier, vol. 43(2), pages 167-198, October.
    30. Xiaojun Hu & Ronald Rousseau & Jin Chen, 2012. "A new approach for measuring the value of patents based on structural indicators for ego patent citation networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(9), pages 1834-1842, September.
    31. Hélène Dernis & Mosahid Khan, 2004. "Triadic Patent Families Methodology," OECD Science, Technology and Industry Working Papers 2004/2, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Won Sang & Sohn, So Young, 2018. "Effects of standardization on the evolution of information and communications technology," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 308-317.
    2. Patrick Wolf & Tobias Buchmann, 2021. "Analyzing development patterns in research networks and technology," Review of Evolutionary Political Economy, Springer, vol. 2(1), pages 55-81, April.
    3. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    4. Guijie Zhang & Guang Yu & Yuqiang Feng & Luning Liu & Zhenhua Yang, 2017. "Improving the publication delay model to characterize the patent granting process," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 621-637, May.
    5. Sungho Son & Nam-Wook Cho, 2020. "Technology Fusion Characteristics in the Solar Photovoltaic Industry of South Korea: A Patent Network Analysis Using IPC Co-Occurrence," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    6. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    7. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    8. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    9. Lyu, Haihua & Bu, Yi & Zhao, Zhenyue & Zhang, Jiarong & Li, Jiang, 2022. "Citation bias in measuring knowledge flow: Evidence from the web of science at the discipline level," Journal of Informetrics, Elsevier, vol. 16(4).
    10. Kerstin Hötte, 2021. "Skill transferability and the stability of transition pathways- A learning-based explanation for patterns of diffusion," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 959-993, July.
    11. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
    12. JinHyo Joseph Yun & EuiSeob Jeong & JinSeu Park, 2016. "Network Analysis of Open Innovation," Sustainability, MDPI, vol. 8(8), pages 1-21, July.
    13. Joon Hyung Cho & Jungpyo Lee & So Young Sohn, 2021. "Predicting future technological convergence patterns based on machine learning using link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5413-5429, July.
    14. Jiang, Xiaorui & Zhuge, Hai, 2019. "Forward search path count as an alternative indirect citation impact indicator," Journal of Informetrics, Elsevier, vol. 13(4).
    15. Wei Yang & Xiang Yu & Dian Wang & Jinrui Yang & Ben Zhang, 2021. "Spatio-temporal evolution of technology flows in China: patent licensing networks 2000–2017," The Journal of Technology Transfer, Springer, vol. 46(5), pages 1674-1703, October.
    16. Jinkuk Kim & Jungsub Yoon & Jeong-Dong Lee, 2021. "Dominant design and evolution of technological trajectories: The case of tank technology, 1915–1998," Journal of Evolutionary Economics, Springer, vol. 31(2), pages 661-676, April.
    17. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    18. Paolo Zeppini & Koen Frenken & Roland Kupers, 2013. "Threshold models of technological transitions," Working Papers 13-06, Eindhoven Center for Innovation Studies, revised Aug 2013.
    19. Hu, Xiaojun & Rousseau, Ronald, 2016. "Scientific influence is not always visible: The phenomenon of under-cited influential publications," Journal of Informetrics, Elsevier, vol. 10(4), pages 1079-1091.
    20. Nobuya Fukugawa, 2022. "Effects of the quality of science on the initial public offering of university spinoffs: evidence from Japan," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4439-4455, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:100:y:2015:i:c:p:317-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.