IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Competing R&D Strategies in an Evolutionary Industry Model

Listed author(s):
  • Murat Yildizoglu


    (Louis Pasteur University)

Early evolutionary models of industry dynamics have used very simple ways of modeling bounded rationality. In the precursory work of Nelson and Winter (1982), for example, R&D decisions of firms are given by a fixed rule: firms invest in each period a fixed proportion of their capital stock in imitative and innovative R&D. Recent models have introduced more elaborate ways of modeling learning with bounded rationality, implicitly through replicator dynamics or simple adaptive mechanisms or explicitly through genetic algorithms or classifiers. Oltra & Yildizoglu (1998) provides a thorough analysis of different alternatives and proposes a general approach. In this work, I adopt a simpler framework to study the role of learning in industry dynamics. I use a simplified version of the initial model of Nelson and Winter (1982) that aims to neutralize the effects of the very peculiar capital-investment decision used in this model. With this version and its well-specified dynamics, I study the confrontation of two different types of investment behavior in Research and Development. The first corresponds to an updated version of Nelson and Winter's fixed-rule behavior: in each period, each firm invests a fixed proportion of its cash-flow on R&D. The second type of behavior includes learning: firms try to adapt their R&D/Cash-Flow ratio to the conditions of the industry. Learning is modeled here through the use of genetic algorithms by this type of firm. Both types of firms coexist initially in the industry. This simple framework is used to answer several questions that can be grouped under two headings: 1) The use of fixed R&D rules does not contradict the empirical evidence. One effectively observes quite stable R&D/CF ratios in industries, but it is important to study if this type of behavior is coherent with the presence of learning or if it can be endogenously generated in evolutionary models. 2) More theoretically, it is important to see if the explicit inclusion of learning in industry models is worthwhile: Does it enrich our understanding of technology dynamics? Does it suggest a competitive edge for strategies strongly based on learning? Does learning give a better chance of success in the long term? These questions are studied in a simulation program developed in Java. A first version of the program is already available in my web site.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: main text
Download Restriction: no

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 1999 with number 343.

in new window

Date of creation: 01 Mar 1999
Handle: RePEc:sce:scecf9:343
Contact details of provider: Postal:
CEF99, Boston College, Department of Economics, Chestnut Hill MA 02467 USA

Fax: +1-617-552-2308
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Silverberg, Gerald & Dosi, Giovanni & Orsenigo, Luigi, 1988. "Innovation, Diversity and Diffusion: A Self-organisation Model," Economic Journal, Royal Economic Society, vol. 98(393), pages 1032-1054, December.
  2. Kwasnicki, Witold & Kwasnicka, Halina, 1992. "Market, innovation, competition: An evolutionary model of industrial dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 19(3), pages 343-368, December.
  3. Jonard, N. & Yfldizoglu, M., 1998. "Technological diversity in an evolutionary industry model with localized learning and network externalities," Structural Change and Economic Dynamics, Elsevier, vol. 9(1), pages 35-53, March.
  4. Vanessa Oltra & Murat Yildizoglu, 1999. "Non Expectations and Adaptive Behaviours: the Missing Trade-off in Models of Innovation," Working Papers of BETA 9915, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
  5. Gérard Ballot & Erol Taymaz, 1999. "Technological Change, Learning and Macro-Economic Coordination: an Evolutionary Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 2(2), pages 1-3.
  6. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
  7. Thomas Brenner, 1998. "Can evolutionary algorithms describe learning processes?," Journal of Evolutionary Economics, Springer, vol. 8(3), pages 271-283.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:343. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.