IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v95y2018icp138-146.html
   My bibliography  Save this article

Potential variation in opportunity cost estimates for REDD+ and its causes

Author

Listed:
  • Yang, Hongqiang
  • Li, Xi

Abstract

REDD+ programs and projects aim to mitigate climate change by reducing deforestation and forest degradation and enhancing forest carbon stocks. The viability of REDD+ programs depends in a large part on their opportunity costs (OCs); however, large variation exists in the estimated OC. This study aims to quantify the variation in OC reported in the literature and identify its causes. In addition to a careful description, a meta-analysis was conducted to examine the heterogeneities across the different estimating methods, data sources, deforestation drivers, and geographic regions found in previous studies. Our results show a large variation in the estimated OC because of differences in data sources, assumptions about future markets, and factors, such as carbon density, crop price and yield, and time horizon. Furthermore, variation exists even among studies of the same driver(s) of deforestation and forest degradation, within the same continent, and from the same data source. Time horizon is the largest contributor to cost variation, followed by carbon density and crop price. Geographically, the OCs are $19.49/tCO2e in Africa, $9.19/tCO2e in Asia Pacific, and $4.33/tCO2e in Latin America, respectively. Despite their large variation, the REDD+ OCs remain fairly low in most reasonable cases.

Suggested Citation

  • Yang, Hongqiang & Li, Xi, 2018. "Potential variation in opportunity cost estimates for REDD+ and its causes," Forest Policy and Economics, Elsevier, vol. 95(C), pages 138-146.
  • Handle: RePEc:eee:forpol:v:95:y:2018:i:c:p:138-146
    DOI: 10.1016/j.forpol.2018.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934118300571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2018.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Osborne, Tracey & Kiker, Clyde, 2005. "Carbon offsets as an economic alternative to large-scale logging: a case study in Guyana," Ecological Economics, Elsevier, vol. 52(4), pages 481-496, March.
    2. Cacho, Oscar J. & Milne, Sarah & Gonzalez, Ricardo & Tacconi, Luca, 2014. "Benefits and costs of deforestation by smallholders: Implications for forest conservation and climate policy," Ecological Economics, Elsevier, vol. 107(C), pages 321-332.
    3. V. Bellassen & V. Gitz, 2008. "Reducing Emissions from Deforestation and Degradation in Cameroon - Assessing costs and benefits," Post-Print hal-00716370, HAL.
    4. Yuki Yamamoto & Kenji Takeuchi, 2012. "Estimating the break-even price for forest protection in Central Kalimantan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(3), pages 289-301, July.
    5. Dang Phan, Thu-Ha & Brouwer, Roy & Davidson, Marc, 2014. "The economic costs of avoided deforestation in the developing world: A meta-analysis," Journal of Forest Economics, Elsevier, vol. 20(1), pages 1-16.
    6. Tilahun, Mesfin & Damnyag, Lawrence & Anglaaere, Luke C.N., 2016. "The Ankasa Forest Conservation Area of Ghana: Ecosystem service values and on-site REDD+ opportunity cost," Forest Policy and Economics, Elsevier, vol. 73(C), pages 168-176.
    7. Philip Fearnside, 2002. "Why a 100-Year Time Horizon should be used for GlobalWarming Mitigation Calculations," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 19-30, March.
    8. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    9. Rakatama, Ari & Pandit, Ram & Ma, Chunbo & Iftekhar, Sayed, 2017. "The costs and benefits of REDD+: A review of the literature," Forest Policy and Economics, Elsevier, vol. 75(C), pages 103-111.
    10. Ickowitz, Amy & Sills, Erin & de Sassi, Claudio, 2017. "Estimating Smallholder Opportunity Costs of REDD+: A Pantropical Analysis from Households to Carbon and Back," World Development, Elsevier, vol. 95(C), pages 15-26.
    11. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    12. Angelsen, Arild & Kaimowitz, David, 1999. "Rethinking the Causes of Deforestation: Lessons from Economic Models," The World Bank Research Observer, World Bank, vol. 14(1), pages 73-98, February.
    13. Darius M. Adams & Ralph J. Alig & DBruce A. McCarl & John M. Callaway & Steven M. Winnett, 1999. "Minimum Cost Strategies for Sequestering Carbon in Forests," Land Economics, University of Wisconsin Press, vol. 75(3), pages 360-374.
    14. Pandey, Shiva Shankar & Maraseni, Tek Narayan & Reardon-Smith, Kathryn & Cockfield, Geoff, 2017. "Analysing foregone costs of communities and carbon benefits in small scale community based forestry practice in Nepal," Land Use Policy, Elsevier, vol. 69(C), pages 160-166.
    15. Jon Nelson & Peter Kennedy, 2009. "The Use (and Abuse) of Meta-Analysis in Environmental and Natural Resource Economics: An Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 345-377, March.
    16. Lian Pin Koh & David S. Wilcove, 2007. "Cashing in palm oil for conservation," Nature, Nature, vol. 448(7157), pages 993-994, August.
    17. Roger Sedjo & Joe Wisniewski & Alaric Sample & John Kinsman, 1995. "The economics of managing carbon via forestry: Assessment of existing studies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(2), pages 139-165, September.
    18. Bellassen, Valentin & Gitz, Vincent, 2008. "Reducing Emissions from Deforestation and Degradation in Cameroon -- Assessing costs and benefits," Ecological Economics, Elsevier, vol. 68(1-2), pages 336-344, December.
    19. Fischer, Richard & Hargita, Yvonne & Günter, Sven, 2016. "Insights from the ground level? A content analysis review of multi-national REDD+ studies since 2010," Forest Policy and Economics, Elsevier, vol. 66(C), pages 47-58.
    20. Mbatu, Richard S, 2016. "REDD+ research: Reviewing the literature, limitations and ways forward," Forest Policy and Economics, Elsevier, vol. 73(C), pages 140-152.
    21. Warr, Peter & Yusuf, Arief Anshory, 2011. "Reducing Indonesia’s deforestation-based greenhouse gas emissions," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(3), pages 1-25, September.
    22. G. Cornelis van Kooten & Alison Eagle & James Manley & Tara Smolak, 2004. "How Costly are Carbon Offsets? A Meta-Analysis of Forest Carbon Sinks," Working Papers 2004-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    23. Don L. Coursey & John L. Hovis & William D. Schulze, 1987. "The Disparity Between Willingness to Accept and Willingness to Pay Measures of Value," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(3), pages 679-690.
    24. Hanemann, W Michael, 1991. "Willingness to Pay and Willingness to Accept: How Much Can They Differ?," American Economic Review, American Economic Association, vol. 81(3), pages 635-647, June.
    25. Cropper, Maureen & Griffiths, Charles, 1994. "The Interaction of Population Growth and Environmental Quality," American Economic Review, American Economic Association, vol. 84(2), pages 250-254, May.
    26. T. D. Stanley, 2001. "Wheat from Chaff: Meta-analysis as Quantitative Literature Review," Journal of Economic Perspectives, American Economic Association, vol. 15(3), pages 131-150, Summer.
    27. Irawan, Silvia & Tacconi, Luca & Ring, Irene, 2013. "Stakeholders' incentives for land-use change and REDD+: The case of Indonesia," Ecological Economics, Elsevier, vol. 87(C), pages 75-83.
    28. Sathaye, Jayant & Andrasko, Kenneth & Chan, Peter, 2011. "Emissions scenarios, costs, and implementation considerations of REDD-plus programs," Environment and Development Economics, Cambridge University Press, vol. 16(4), pages 361-380, August.
    29. Catherine Potvin & Bruno Guay & Lucio Pedroni, 2008. "Is reducing emissions from deforestation financially feasible? A Panamanian case study," Climate Policy, Taylor & Francis Journals, vol. 8(1), pages 23-40, January.
    30. Leblois, Antoine & Damette, Olivier & Wolfersberger, Julien, 2017. "What has Driven Deforestation in Developing Countries Since the 2000s? Evidence from New Remote-Sensing Data," World Development, Elsevier, vol. 92(C), pages 82-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karanfil, Fatih & Pierru, Axel, 2021. "The opportunity cost of domestic oil consumption for an oil exporter: Illustration for Saudi Arabia," Energy Economics, Elsevier, vol. 96(C).
    2. Ming-Yun Chu & Wan-Yu Liu, 2021. "Assessing the Opportunity Cost of Carbon Stock Caused by Land-Use Changes in Taiwan," Land, MDPI, vol. 10(11), pages 1-15, November.
    3. Alexandre Anders Brasil & Humberto Angelo & Alexandre Nascimento de Almeida & Eraldo Aparecido Trondoli Matricardi & Henrique Marinho Leite Chaves & Maristela Franchetti de Paula, 2023. "Modeling the Impacts of Soil Management on Avoided Deforestation and REDD+ Payments in the Brazilian Amazon: A Systems Approach," Sustainability, MDPI, vol. 15(15), pages 1-27, August.
    4. Ye Song & Hongjun Peng, 2019. "Strategies of Forestry Carbon Sink under Forest Insurance and Subsidies," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    5. Yvonne Hargita & Lukas Giessen & Sven Günter, 2020. "Similarities and Differences between International REDD+ and Transnational Deforestation-Free Supply Chain Initiatives—A Review," Sustainability, MDPI, vol. 12(3), pages 1-33, January.
    6. Guillaume Lestrelin & Jean-Christophe Castella & Qiaohong Li & Thoumthone Vongvisouk & Nguyen Dinh Tien & Ole Mertz, 2019. "A Nested Land Uses–Landscapes–Livelihoods Approach to Assess the Real Costs of Land-Use Transitions: Insights from Southeast Asia," Land, MDPI, vol. 8(1), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang Phan, Thu-Ha & Brouwer, Roy & Davidson, Marc, 2014. "The economic costs of avoided deforestation in the developing world: A meta-analysis," Journal of Forest Economics, Elsevier, vol. 20(1), pages 1-16.
    2. Yvonne Hargita & Lukas Giessen & Sven Günter, 2020. "Similarities and Differences between International REDD+ and Transnational Deforestation-Free Supply Chain Initiatives—A Review," Sustainability, MDPI, vol. 12(3), pages 1-33, January.
    3. Cunha, Felipe Arias Fogliano de Souza & Börner, Jan & Wunder, Sven & Cosenza, Carlos Alberto Nunes & Lucena, André F.P., 2016. "The implementation costs of forest conservation policies in Brazil," Ecological Economics, Elsevier, vol. 130(C), pages 209-220.
    4. Rakatama, Ari & Pandit, Ram & Ma, Chunbo & Iftekhar, Sayed, 2017. "The costs and benefits of REDD+: A review of the literature," Forest Policy and Economics, Elsevier, vol. 75(C), pages 103-111.
    5. Cacho, Oscar J. & Milne, Sarah & Gonzalez, Ricardo & Tacconi, Luca, 2014. "Benefits and costs of deforestation by smallholders: Implications for forest conservation and climate policy," Ecological Economics, Elsevier, vol. 107(C), pages 321-332.
    6. Neudert, Regina & Olschofsky, Konstantin & Kübler, Daniel & Prill, Laura & Köhl, Michael & Wätzold, Frank, 2018. "Opportunity costs of conserving a dry tropical forest under REDD+: The case of the spiny dry forest in southwestern Madagascar," Forest Policy and Economics, Elsevier, vol. 95(C), pages 102-114.
    7. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    8. Choumert, Johanna & Combes Motel, Pascale & Dakpo, Hervé K., 2013. "Is the Environmental Kuznets Curve for deforestation a threatened theory? A meta-analysis of the literature," Ecological Economics, Elsevier, vol. 90(C), pages 19-28.
    9. Gren, Ing-Marie & Zeleke, Abenezer Aklilu, 2016. "Policy design for forest carbon sequestration: A review of the literature," Forest Policy and Economics, Elsevier, vol. 70(C), pages 128-136.
    10. Sheng, Jichuan & Tang, Weizong & Zhu, Bangzhu, 2019. "Incentivizing REDD+: The role of cost-sharing mechanisms in encouraging stakeholders to reduce emissions from deforestation and degradation," Ecosystem Services, Elsevier, vol. 40(C).
    11. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    12. Guillaume Lestrelin & Jean-Christophe Castella & Qiaohong Li & Thoumthone Vongvisouk & Nguyen Dinh Tien & Ole Mertz, 2019. "A Nested Land Uses–Landscapes–Livelihoods Approach to Assess the Real Costs of Land-Use Transitions: Insights from Southeast Asia," Land, MDPI, vol. 8(1), pages 1-20, January.
    13. Vass, Miriam Münnich & Elofsson, Katarina, 2016. "Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050?," Journal of Forest Economics, Elsevier, vol. 24(C), pages 82-105.
    14. Munnich Vass, Miriam & Elofsson, Katarina, 2013. "Is forest sequestration at the expense of bioenergy and forest products cost-effective in EU climate policy to 2050?," Working Paper Series 2013:9, Swedish University of Agricultural Sciences, Department Economics.
    15. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    16. Ajanaku, B.A. & Collins, A.R., 2021. "Economic growth and deforestation in African countries: Is the environmental Kuznets curve hypothesis applicable?," Forest Policy and Economics, Elsevier, vol. 129(C).
    17. David Walker, 2014. "The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes," Working Papers 2014.02, School of Economics, La Trobe University.
    18. Rosenberger, Randall S. & Stanley, Tom D., 2006. "Measurement, generalization, and publication: Sources of error in benefit transfers and their management," Ecological Economics, Elsevier, vol. 60(2), pages 372-378, December.
    19. Zandersen, Marianne & Tol, Richard S.J., 2009. "A meta-analysis of forest recreation values in Europe," Journal of Forest Economics, Elsevier, vol. 15(1-2), pages 109-130, January.
    20. Sebri, Maamar, 2015. "Use renewables to be cleaner: Meta-analysis of the renewable energy consumption–economic growth nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 657-665.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:95:y:2018:i:c:p:138-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.