IDEAS home Printed from https://ideas.repec.org/p/trb/wpaper/2014.02.html
   My bibliography  Save this paper

The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes

Author

Listed:
  • David Walker

    (School Economics, La Trobe University)

Abstract

Concern for the Earth’s changing climate, as a consequence of rising greenhouse gas (GHG) concentrations in the atmosphere, has led to policies aimed at reducing GHG emissions and increasing carbon sequestration. In Australia this has been acknowledged in the New South Wales Greenhouse Gas Abatement Scheme and the Carbon Farming Initiative, which provide price incentives for forest-based sequestration. However, the issue of the most appropriate accounting scheme to account for the impermanence of forest based sequestration has been debated and remains unresolved in policy documents. The objective of the paper is to investigate the economic potential for forest-based sequestration to reduce carbon dioxide concentrations in the atmosphere for three different accounting schemes. To this end, a model of the New South Wales forest sector is developed to simulate changes in land use from agriculture to forestry; and in forest management, for a range of carbon prices and accounting regimes. The model builds on previous modelling of forestry in Australia and that of forest-based sequestration by incorporating: endogenous timber prices; the probability of fire destroying a portion of the forest; and an increasing opportunity cost of agricultural land. Importantly, the paper improves our understanding of the sector wide potential for carbon sequestration for the different accounting rules.

Suggested Citation

  • David Walker, 2014. "The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes," Working Papers 2014.02, School of Economics, La Trobe University.
  • Handle: RePEc:trb:wpaper:2014.02
    Note: ISSN-1837-2198
    as

    Download full text from publisher

    File URL: http://www.latrobe.edu.au/__data/assets/pdf_file/0010/563977/2014.02.pdf
    Download Restriction: no

    File URL:
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spreen, Thomas H., 2006. "Price Endogenous Mathematical Programming Models and Trade Analysis," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 38(2), pages 1-5, August.
    2. Galinato, Gregmar I. & Olanie, Aaron & Uchida, Shinsuke & Yoder, Jonathan K., 2011. "Long-term versus temporary certified emission reductions in forest carbon sequestration programs," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(4), pages 1-23.
    3. Roger D. Norton & Gerhard W. Schiefer, 1980. "Agricultural sector programming models: A review," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 7(3), pages 229-265.
    4. Alig, Ralph J. & Adams, Darius M. & McCarl, Bruce A., 1998. "Impacts of Incorporating Land Exchanges Between Forestry and Agriculture in Sector Models," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 30(2), pages 389-401, December.
    5. Oscar J. Cacho & Robyn L. Hean & Russell M. Wise, 2003. "Carbon‐accounting methods and reforestation incentives," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 153-179, June.
    6. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    7. Daniel Spring & John Kennedy & Ralph Mac Nally, 2005. "Optimal management of a flammable forest providing timber and carbon sequestration benefits: an Australian case study," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(3), pages 303-320, September.
    8. Darius M. Adams & Ralph J. Alig & DBruce A. McCarl & John M. Callaway & Steven M. Winnett, 1999. "Minimum Cost Strategies for Sequestering Carbon in Forests," Land Economics, University of Wisconsin Press, vol. 75(3), pages 360-374.
    9. Bigsby, Hugh R., 1994. "Production Structure And The Australian Sawmilling Industry," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 38(3), pages 1-18, December.
    10. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    11. Brian Murray, 2000. "Carbon values, reforestation, and `perverse' incentives under the Kyoto protocol: An empirical analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(3), pages 271-295, September.
    12. Brent Sohngen and Roger Sedjo, 2006. "Carbon Sequestration in Global Forests Under Different Carbon Price Regimes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 109-126.
    13. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447.
    14. Bruce A. McCarl & Thomas H. Spreen, 1980. "Price Endogenous Mathematical Programming As a Tool for Sector Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(1), pages 87-102.
    15. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    16. G. Cornelis van Kooten & Alison Eagle & James Manley & Tara Smolak, 2004. "How Costly are Carbon Offsets? A Meta-Analysis of Forest Carbon Sinks," Working Papers 2004-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    17. Hepburn, Cameron J. & Koundouri, Phoebe, 2007. "Recent advances in discounting: Implications for forest economics," Journal of Forest Economics, Elsevier, vol. 13(2-3), pages 169-189, August.
    18. Jayant Sathaye, Willy Makundi, Larry Dale, Peter Chan, and Kenneth Andrasko, 2006. "GHG Mitigation Potential, Costs and Benefits in Global Forests: A Dynamic Partial Equilibrium Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 127-162.
    19. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Latta, Gregory S. & Adams, Darius M. & Bell, Kathleen P. & Kline, Jeffrey D., 2016. "Evaluating land-use and private forest management responses to a potential forest carbon offset sales program in western Oregon (USA)," Forest Policy and Economics, Elsevier, vol. 65(C), pages 1-8.
    2. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    3. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    4. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    5. G. Cornelis van Kooten & Susanna Laaksonen-Craig & Yichuan Wang, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 2007-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    6. Latta, Gregory & Adams, Darius M. & Alig, Ralph J. & White, Eric, 2011. "Simulated effects of mandatory versus voluntary participation in private forest carbon offset markets in the United States," Journal of Forest Economics, Elsevier, vol. 17(2), pages 127-141, April.
    7. Renato Rosa & Clara Costa Duarte & Maria A. Cunha-e-Sá, 2009. "The Role of Forests as Carbon Sinks: Land-Use and Carbon Accounting," Working Papers 2009.61, Fondazione Eni Enrico Mattei.
    8. Markowski-Lindsay, Marla & Stevens, Thomas & Kittredge, David B. & Butler, Brett J. & Catanzaro, Paul & Dickinson, Brenton J., 2011. "Barriers to Massachusetts forest landowner participation in carbon markets," Ecological Economics, Elsevier, vol. 71(C), pages 180-190.
    9. Eriksson, Mathilda, 2020. "Afforestation and avoided deforestation in a multi-regional integrated assessment model," Ecological Economics, Elsevier, vol. 169(C).
    10. Vass, Miriam Münnich & Elofsson, Katarina, 2016. "Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050?," Journal of Forest Economics, Elsevier, vol. 24(C), pages 82-105.
    11. Munnich Vass, Miriam & Elofsson, Katarina, 2013. "Is forest sequestration at the expense of bioenergy and forest products cost-effective in EU climate policy to 2050?," Working Paper Series 2013:9, Swedish University of Agricultural Sciences, Department Economics.
    12. Sabina Shaikh & Pavel Suchánek & Lili Sun & G. Cornelis van Kooten, 2003. "Does Inclusion of Landowners’ Non-Market Values Lower Costs of Creating Carbon Forest Sinks?," Working Papers 2003-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    13. Lambert, David K. & McCarl, Bruce A. & He, Quifen & Kaylen, Michael S. & Rosenthal, Wesley & Chang, Ching-Cheng & Nayda, W.I., 1995. "Uncertain Yields In Sectoral Welfare Analysis: An Application To Global Warming," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 27(2), pages 1-14, December.
    14. Ovchinnikova, Natalia & Lynne, Gary D. & Sautter, John & Kruse, Colby, 2006. "What motivates farmers to sequester carbon: an empirical investigation," 2006 Annual meeting, July 23-26, Long Beach, CA 21288, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Shaikh, Sabina L. & Sun, Lili & van Kooten, G. Cornelis, 2005. "Are Agricultural Values a Reliable Guide in Determining Landowners’ Decisions to Create Carbon Forest Sinks?," Working Papers 37017, University of Victoria, Resource Economics and Policy.
    16. Buongiorno, Joseph & Zhu, Shushuai, 2013. "Consequences of carbon offset payments for the global forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 384-401.
    17. Chen, Chi-Chung & McCarl, Bruce A., 2000. "The Value Of Enso Information To Agriculture: Consideration Of Event Strength And Trade," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-18, December.
    18. Schneider, Uwe A. & McCarl, Bruce A., 2005. "Implications of a Carbon-Based Energy Tax for U.S. Agriculture," Agricultural and Resource Economics Review, Cambridge University Press, vol. 34(2), pages 265-279, October.
    19. Chih-Chun Kung & Meng-Shiuh Chang, 2015. "Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    20. Miettinen, Jenni & Ollikainen, Markku & Nieminen, Tiina M. & Ukonmaanaho, Liisa & Laurén, Ari & Hynynen, Jari & Lehtonen, Mika & Valsta, Lauri, 2014. "Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter," Forest Policy and Economics, Elsevier, vol. 47(C), pages 25-35.

    More about this item

    Keywords

    Carbon sequestration; carbon accounting; forestry; forest-sector model;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L52 - Industrial Organization - - Regulation and Industrial Policy - - - Industrial Policy; Sectoral Planning Methods
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trb:wpaper:2014.02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stephen Scoglio (email available below). General contact details of provider: https://edirc.repec.org/data/sblatau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.