IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i5p5981-5995d49523.html
   My bibliography  Save this article

Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions

Author

Listed:
  • Chih-Chun Kung

    (Institute of Poyang Lake Eco-Economics, Jiangxi University of Finance and Economics, Nanchang 330013, China)

  • Meng-Shiuh Chang

    (School of Public Finance and Taxation, Southwestern University of Finance and Economics, Chengdu 611130, China)

Abstract

Taiwan is eager to develop renewable energy because it is vulnerable to energy price distortion and ocean level rise. Previous studies show bioenergy technologies can be applied mutually, but pay little attention on feedstocks to energy conversion rate, which has potential influences on policy making in renewable energy and environment. This study employs a price endogenous mathematical programming model to simultaneously simulate the market operations under various feedstocks to energy conversion rates, energy prices, and greenhouse gas (GHG) prices. The result shows pyrolysis-based electricity can reach up to 2.75 billion kWh annually, but it will be driven out at low conversion rate and high GHG price. Pyrolysis plus biochar application will be the optimal option in terms of carbon sequestration. Market valuation on potential threats of extreme weather could have substantial influences on ethanol and renewable electricity generation. To achieve aimed GHG emission reduction and/or bioenergy production, government intervention may be involved to align the market operation with Taiwan’s environmental policy.

Suggested Citation

  • Chih-Chun Kung & Meng-Shiuh Chang, 2015. "Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:5:p:5981-5995:d:49523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/5/5981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/5/5981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. M. Adams & S. A. Hamilton & B. A. McCarl, 1986. "The Benefits of Pollution Control: The Case of Ozone and U.S. Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 886-893.
    2. Spreen, Thomas H., 2006. "Price Endogenous Mathematical Programming Models and Trade Analysis," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 38(2), pages 249-253, August.
    3. Darius M. Adams & Ralph J. Alig & DBruce A. McCarl & John M. Callaway & Steven M. Winnett, 1999. "Minimum Cost Strategies for Sequestering Carbon in Forests," Land Economics, University of Wisconsin Press, vol. 75(3), pages 360-374.
    4. Ching-Cheng Chang & Bruce A. McCarl & James W. Mjelde & James W. Richardson, 1992. "Sectoral Implications of Farm Program Modifications," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(1), pages 38-49.
    5. Bruce A. McCarl, 2008. "Food, Biofuel, Global Agriculture, and Environment: Discussion," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(3), pages 530-532.
    6. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    7. Chang, Ching-Cheng & Eddleman, Bobby R. & McCarl, Bruce A., 1991. "Potential Benefits Of Rice Variety And Water Management Improvements In The Texas Gulf Coast," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 16(2), pages 1-9, December.
    8. Keith H. Coble & Ching-Cheng Chang & Bruce A. McCarl & Bobby R. Eddleman, 1992. "Assessing Economic Implications of New Technology: The Case of Cornstarch-Based Biodegradable Plastic," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(1), pages 33-43.
    9. Bruce A. McCarl & Thomas H. Spreen, 1980. "Price Endogenous Mathematical Programming As a Tool for Sector Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(1), pages 87-102.
    10. Scott A. Hamilton & Bruce A. McCarl & Richard M. Adams, 1985. "The Effect of Aggregate Response Assumptions on Environmental Impact Analyses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 407-413.
    11. Chang, Ching-Cheng, 2002. "The potential impact of climate change on Taiwan's agriculture," Agricultural Economics, Blackwell, vol. 27(1), pages 51-64, May.
    12. RICHARD M. Adams & DARIUS M. Adams & JOHN M. Callaway & CHING‐CHENG Chang & BRUCE A. Mccarl, 1993. "Sequestering Carbon On Agricultural Land: Social Cost And Impacts On Timber Markets," Contemporary Economic Policy, Western Economic Association International, vol. 11(1), pages 76-87, January.
    13. Chi‐Chung Chen & Ching‐Cheng Chang, 2005. "The impact of weather on crop yield distribution in Taiwan: some new evidence from panel data models and implications for crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 33(s3), pages 503-511, November.
    14. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    15. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    16. Chih-Chun Kung & Bruce McCarl & Xiaoyong Cao & Hualin Xie, 2013. "Bioenergy prospects in Taiwan using set-aside land – an economic evaluation," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 5(4), pages 489-511, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    2. Chih-Chun Kung & Li-Jiun Chen & Tsung-Ju Lee & Xianling Jiang & Ruiqi Lin, 2019. "Wind power potential for energy sustainability and climate change mitigation: A case study in Taiwan," Energy & Environment, , vol. 30(2), pages 304-321, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen & Xiaoyong Cao, 2014. "Environmental Impact and Energy Production: Evaluation of Biochar Application on Taiwanese Set-Aside Land," Energy & Environment, , vol. 25(1), pages 13-39, February.
    2. Chih-Chun Kung & Hualin Xie & Tao Wu & Shih-Chih Chen, 2014. "Biofuel for Energy Security: An Examination on Pyrolysis Systems with Emissions from Fertilizer and Land-Use Change," Sustainability, MDPI, vol. 6(2), pages 1-18, January.
    3. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    4. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen, 2014. "An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions," IJERPH, MDPI, vol. 11(3), pages 1-19, March.
    5. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
    6. Kung, Chih-Chun, 2019. "A stochastic evaluation of economic and environmental effects of Taiwan's biofuel development under climate change," Energy, Elsevier, vol. 167(C), pages 1051-1064.
    7. Meng-Shiuh CHANG & Wen WANG & Chih-Chun KUNG, 2015. "Economic effects of the biochar application on rice supply in Taiwan," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(6), pages 284-295.
    8. Kung, Chih-Chun & Zhang, Ning, 2015. "Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation," Energy, Elsevier, vol. 90(P2), pages 1532-1544.
    9. Kung, Chih-Chun & Zhang, Ning & Choi, Yongrok & Xiong, Kai & Yu, Jiangli, 2019. "Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts," Energy Policy, Elsevier, vol. 125(C), pages 267-276.
    10. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Xiaoyong CAO & Chih-Chun KUNG & Yuelong WANG, 2017. "An environmental and economic evaluation of carbon sequestration from pyrolysis and biochar application in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(12), pages 569-578.
    12. Callaway, J.M., 2000. "Assessing the Costs and Market Impacts of Carbon Sequestration, Climate Change and Acid Rain," Other publications TiSEM c58adec9-1535-46cf-b213-b, Tilburg University, School of Economics and Management.
    13. Chih-Chun KUNG, 2018. "A dynamic framework of sustainable development in agriculture and bioenergy," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 445-455.
    14. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    15. Ching-Cheng Chang, 1999. "Carbon sequestration cost by afforestation in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 2(3), pages 199-213, September.
    16. Kung, Chih-Chun & Lan, Xiaolong & Yang, Yunxia & Kung, Shan-Shan & Chang, Meng-Shiuh, 2022. "Effects of green bonds on Taiwan's bioenergy development," Energy, Elsevier, vol. 238(PA).
    17. Uwe A. Schneider & Bruce A. McCarl, 2003. "Measuring Abatement Potentials When Multiple Change Is Present: The Case Of Greenhouse Gas Mitigation In U.S. Agriculture And Forestry," Working Papers FNU-23, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2002.
    18. Meng-Shiuh Chang & Chih-Chun Kung, 2018. "The greenhouse gas impact of bioenergy in developing economies: Evidence from Taiwan," Energy & Environment, , vol. 29(3), pages 315-332, May.
    19. McCarl, Bruce A., 1992. "Mathematical Programming For Resource Policy Appraisal Under Multiple Objectives," Working Papers 11888, Environmental and Natural Resources Policy Training Project.
    20. Boris O. K. Lokonon & Aklesso Y. G. Egbendewe & Naga Coulibaly & Calvin Atewamba, 2019. "The Potential Impact Of Climate Change On Agriculture In West Africa: A Bio-Economic Modeling Approach," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:5:p:5981-5995:d:49523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.