IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010235.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

The volatility of global energy uncertainty: Renewable alternatives

Author

Listed:
  • Işık, Cem
  • Kuziboev, Bekhzod
  • Ongan, Serdar
  • Saidmamatov, Olimjon
  • Mirkhoshimova, Mokhirakhon
  • Rajabov, Alibek

Abstract

Fluctuations in energy markets affect all economic activities by affecting energy prices and investment decisions. This study is the first attempt to investigate the energy-related uncertainty (volatility) in the world using the newly developed energy-related uncertainty index (EUI). The ARCH (autoregressive conditional heteroskedasticity) and GARCH (generalized autoregressive conditional heteroskedasticity) models are applied for this investigation between 1996 and 2021. The ARCH model reveals that global energy uncertainty is highly volatile, with a coefficient of 0.63. As policy implications, fostering the transition process to renewable energy and a green economy is recommended. The rise of renewable energy can reduce energy dependency and uncertainty in energy markets since they are less sensitive to exogenous shocks and fossil fuel price fluctuations. Understanding this uncertainty helps policymakers develop more effective energy policies, increase energy security and a sustainable environment, and maintain economic stability. The proposal to increase renewable energy in this study also aligns with the United Nation's SDG7 (Affordable and Clean Energy), which aims to improve the share of renewable energy by 2030.

Suggested Citation

  • Işık, Cem & Kuziboev, Bekhzod & Ongan, Serdar & Saidmamatov, Olimjon & Mirkhoshimova, Mokhirakhon & Rajabov, Alibek, 2024. "The volatility of global energy uncertainty: Renewable alternatives," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010235
    DOI: 10.1016/j.energy.2024.131250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehmet Balcilar, David Roubaud, and Muhammad Shahbaz, 2019. "The Impact of Energy Market Uncertainty Shocks on Energy Transition in Europe," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    2. Alsalman, Zeina, 2016. "Oil price uncertainty and the U.S. stock market analysis based on a GARCH-in-mean VAR model," Energy Economics, Elsevier, vol. 59(C), pages 251-260.
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    5. Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
    6. Kais Tissaoui & Ilyes Abidi & Nadia Azibi & Mariem Nsaibi, 2024. "Spillover Effects between Crude Oil Returns and Uncertainty: New Evidence from Time-Frequency Domain Approaches," Energies, MDPI, vol. 17(2), pages 1-24, January.
    7. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    8. Chu, Lan Khanh & Ghosh, Sudeshna & Doğan, Buhari & Nguyen, Nam Hoai & Shahbaz, Muhammad, 2023. "Energy security as new determinant of renewable energy: The role of economic complexity in top energy users," Energy, Elsevier, vol. 263(PC).
    9. Cem Işık & Ercan Sirakaya-Turk & Serdar Ongan, 2020. "Testing the efficacy of the economic policy uncertainty index on tourism demand in USMCA: Theory and evidence," Tourism Economics, , vol. 26(8), pages 1344-1357, December.
    10. Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Chiou-Wei, Song-Zan & Zhu, Zhen & Chen, Sheng-Hung & Hsueh, Sheng-Pin, 2016. "Controlling for relevant variables: Energy consumption and economic growth nexus revisited in an EGARCH-M (Exponential GARCH-in-Mean) model," Energy, Elsevier, vol. 109(C), pages 391-399.
    13. Rasheed O. Alao & Abdulkareem Alhassan & Saheed Alao & Ifedolapo O. Olanipekun & Godwin O. Olasehinde-Williams & Ojonugwa Usman, 2023. "Symmetric and asymmetric GARCH estimations of the impact of oil price uncertainty on output growth: evidence from the G7," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-14, December.
    14. Amirinia, Gholamreza & Kamranzad, Bahareh & Mafi, Somayeh, 2017. "Wind and wave energy potential in southern Caspian Sea using uncertainty analysis," Energy, Elsevier, vol. 120(C), pages 332-345.
    15. Su, Chi-Wei & Khan, Khalid & Umar, Muhammad & Zhang, Weike, 2021. "Does renewable energy redefine geopolitical risks?," Energy Policy, Elsevier, vol. 158(C).
    16. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    17. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko, 2021. "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise," Energies, MDPI, vol. 14(23), pages 1-22, November.
    18. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    19. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    20. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    21. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
    22. Alola, Andrew Adewale & Özkan, Oktay & Obekpa, Hephzibah Onyeje, 2023. "Examining the patterns of disaggregate energy security risk and crude oil price: the USA scenario over 1970–2040," Resources Policy, Elsevier, vol. 82(C).
    23. Maher Selim & Ryan Zhou & Wenying Feng & Peter Quinsey, 2021. "Estimating Energy Forecasting Uncertainty for Reliable AI Autonomous Smart Grid Design," Energies, MDPI, vol. 14(1), pages 1-15, January.
    24. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    25. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    26. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
    27. Mushtaq Hussain Khan & Junaid Ahmed & Mazhar Mughal & Imtiaz Hussain Khan, 2023. "Oil price volatility and stock returns: Evidence from three oil‐price wars," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3162-3182, July.
    28. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    29. Kanamura, Takashi, 2009. "A supply and demand based volatility model for energy prices," Energy Economics, Elsevier, vol. 31(5), pages 736-747, September.
    30. Dang, Tam Hoang-Nhat & Nguyen, Canh Phuc & Lee, Gabriel S. & Nguyen, Binh Quang & Le, Thuy Thu, 2023. "Measuring the energy-related uncertainty index," Energy Economics, Elsevier, vol. 124(C).
    31. Qurat-ul-Ann, Abre-Rehmat & Mirza, Faisal Mehmood, 2020. "Meta-analysis of empirical evidence on energy poverty: The case of developing economies," Energy Policy, Elsevier, vol. 141(C).
    32. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    33. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
    34. Konrad Bogner & Florian Pappenberger & Massimiliano Zappa, 2019. "Machine Learning Techniques for Predicting the Energy Consumption/Production and Its Uncertainties Driven by Meteorological Observations and Forecasts," Sustainability, MDPI, vol. 11(12), pages 1-22, June.
    35. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    36. Szczygielski, Jan Jakub & Brzeszczyński, Janusz & Charteris, Ailie & Bwanya, Princess Rutendo, 2022. "The COVID-19 storm and the energy sector: The impact and role of uncertainty," Energy Economics, Elsevier, vol. 109(C).
    37. Yang, Yandong & Li, Shufang & Li, Wenqi & Qu, Meijun, 2018. "Power load probability density forecasting using Gaussian process quantile regression," Applied Energy, Elsevier, vol. 213(C), pages 499-509.
    38. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    39. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    40. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    41. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    42. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
    43. Bakas, Dimitrios & Triantafyllou, Athanasios, 2019. "Volatility forecasting in commodity markets using macro uncertainty," Energy Economics, Elsevier, vol. 81(C), pages 79-94.
    44. Ferruzzi, Gabriella & Cervone, Guido & Delle Monache, Luca & Graditi, Giorgio & Jacobone, Francesca, 2016. "Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production," Energy, Elsevier, vol. 106(C), pages 194-202.
    45. Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022. "Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?," Energy Economics, Elsevier, vol. 114(C).
    46. Scholten, Daniel & Bazilian, Morgan & Overland, Indra & Westphal, Kirsten, 2020. "The geopolitics of renewables: New board, new game," Energy Policy, Elsevier, vol. 138(C).
    47. Olanipekun, Ifedolapo Olabisi & Ozkan, Oktay & Olasehinde-Williams, Godwin, 2023. "Is renewable energy use lowering resource-related uncertainties?," Energy, Elsevier, vol. 271(C).
    48. Salim Hamza Ringim & Abdulkareem Alhassan & Hasan Güngör & Festus Victor Bekun, 2022. "Economic Policy Uncertainty and Energy Prices: Empirical Evidence from Multivariate DCC-GARCH Models," Energies, MDPI, vol. 15(10), pages 1-18, May.
    49. Deng, Zhengxing & Hao, Yu, 2024. "Energy price uncertainty, environmental policy, and firm investment: A dynamic modeling approach," Energy Economics, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara, Christian Enrico & D Adamo, Idiano & Gastaldi, Massimo & Nizami, Abdul Sattar, 2024. "Clean energy for a sustainable future: Analysis of a PV system and LED bulbs in a hotel," Energy, Elsevier, vol. 299(C).
    2. Işık, Cem & Bulut, Umit & Ongan, Serdar & Islam, Hasibul & Irfan, Muhammad, 2024. "Exploring how economic growth, renewable energy, internet usage, and mineral rents influence CO2 emissions: A panel quantile regression analysis for 27 OECD countries," Resources Policy, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    3. Zheng, Deyuan & Zhao, Chunguang & Hu, Jiaying, 2023. "Impact of geopolitical risk on the volatility of natural resource commodity futures prices in China," Resources Policy, Elsevier, vol. 83(C).
    4. Tong Fang & Deyu Miao & Zhi Su & Libo Yin, 2023. "Uncertainty‐driven oil volatility risk premium and international stock market volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 872-904, July.
    5. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    6. Yao, Zhigang & Liu, Yao, 2023. "Crude oil volatility forecasting: New evidence from world uncertainty index," Finance Research Letters, Elsevier, vol. 58(PA).
    7. Zhang, Jiaming & Xiang, Yitian & Zou, Yang & Guo, Songlin, 2024. "Volatility forecasting of Chinese energy market: Which uncertainty have better performance?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    8. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    9. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
    10. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    11. Tamilselvan, M. & Halder, Abhishek & Kannadhasan, M., 2024. "Exploring the ingredients, mixtures, and inclinations of geopolitical risk," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 187-206.
    12. Abdullah Sultan Al Shammre & Benaissa Chidmi, 2023. "Oil Price Forecasting Using FRED Data: A Comparison between Some Alternative Models," Energies, MDPI, vol. 16(11), pages 1-24, May.
    13. Kostas Andriosopoulos & Nikos Nomikos, 2012. "Risk management in the energy markets and Value-at-Risk modelling: a Hybrid approach," RSCAS Working Papers 2012/47, European University Institute.
    14. Zeynel Abidin Ozdemir, 2010. "Dynamics Of Inflation, Output Growth And Their Uncertainty In The Uk: An Empirical Analysis," Manchester School, University of Manchester, vol. 78(6), pages 511-537, December.
    15. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    16. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    17. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    18. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    19. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    20. Pami Dua & Nishita Raje & Satyananda Sahoo, 2004. "Interest Rate Modeling and Forecasting in India," Occasional papers 3, Centre for Development Economics, Delhi School of Economics.

    More about this item

    Keywords

    EUI; Affordable and clean energy; Energy-related uncertainty index; Renewable energy; ARCH & GARCH;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.