Optimization of wind-solar hybrid system based on energy stability of multiple time scales and uncertainty of renewable resources
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.133790
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Li, Mingquan & Virguez, Edgar & Shan, Rui & Tian, Jialin & Gao, Shuo & Patiño-Echeverri, Dalia, 2022. "High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system," Applied Energy, Elsevier, vol. 306(PA).
- Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
- Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
- Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Hou, Wenjuan & Zhang, Xueliang & Wu, Maowei & Yuxin Feng, & Yang, Linsheng, 2022. "Integrating stability and complementarity to assess the accommodable generation potential of multiscale solar and wind resources: A case study in a resource-based area in China," Energy, Elsevier, vol. 261(PB).
- Andresen, Gorm B. & Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2014. "The potential for arbitrage of wind and solar surplus power in Denmark," Energy, Elsevier, vol. 76(C), pages 49-58.
- Ferreira, Miguel Marques & Santos, Júlia Alves & Silva, Lincon Rozendo da & Abrahao, Raphael & Gomes, Flavio da Silva Vitorino & Braz, Helon David Macêdo, 2023. "A new index to evaluate renewable energy potential: A case study on solar, wind and hybrid generation in Northeast Brazil," Renewable Energy, Elsevier, vol. 217(C).
- Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
- Battaglia, V. & Vanoli, L., 2024. "Optimizing renewable energy integration in new districts: Power-to-X strategies for improved efficiency and sustainability," Energy, Elsevier, vol. 305(C).
- Canales, Fausto A. & Sapiega, Patryk & Kasiulis, Egidijus & Jonasson, Erik & Temiz, Irina & Jurasz, Jakub, 2024. "Temporal dynamics and extreme events in solar, wind, and wave energy complementarity: Insights from the Polish Exclusive Economic Zone," Energy, Elsevier, vol. 305(C).
- Gao, Yang & Meng, Yangyang & Dong, Guanpeng & Ma, Shaoxiu & Miao, Changhong & Xiao, Jianhua & Mao, Shuting & Shao, Lili, 2024. "The wind-solar hybrid energy could serve as a stable power source at multiple time scale in China mainland," Energy, Elsevier, vol. 305(C).
- Yadav, Subhash & Kumar, Pradeep & Kumar, Ashwani, 2024. "Techno-economic assessment of hybrid renewable energy system with multi energy storage system using HOMER," Energy, Elsevier, vol. 297(C).
- Işık, Cem & Kuziboev, Bekhzod & Ongan, Serdar & Saidmamatov, Olimjon & Mirkhoshimova, Mokhirakhon & Rajabov, Alibek, 2024. "The volatility of global energy uncertainty: Renewable alternatives," Energy, Elsevier, vol. 297(C).
- Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2023. "Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
- Heide, Dominik & Greiner, Martin & von Bremen, Lüder & Hoffmann, Clemens, 2011. "Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation," Renewable Energy, Elsevier, vol. 36(9), pages 2515-2523.
- Zambrano-Monserrate, Manuel A. & Soto, Gonzalo Hernández & Ahakwa, Isaac & Manigandan, Palanisamy, 2024. "Dynamic effects on modern renewable energy generation: The role of patents in clean energy technology," Energy, Elsevier, vol. 311(C).
- Ebaidalla, Ebaidalla M., 2024. "The impact of taxation, technological innovation and trade openness on renewable energy investment: Evidence from the top renewable energy producing countries," Energy, Elsevier, vol. 306(C).
- Liu, Lintong & Zhai, Rongrong & Hu, Yangdi, 2023. "Multi-objective optimization with advanced exergy analysis of a wind-solar‑hydrogen multi-energy supply system," Applied Energy, Elsevier, vol. 348(C).
- Boretti, Alberto & Castelletto, Stefania, 2024. "Hydrogen energy storage requirements for solar and wind energy production to account for long-term variability," Renewable Energy, Elsevier, vol. 221(C).
- Yang, Zhaofu & Liu, Hong & Yuan, Yongna & Li, Muhua, 2024. "Can renewable energy development facilitate China's sustainable energy transition? Perspective from Energy Trilemma," Energy, Elsevier, vol. 304(C).
- Hemmati, Reza & Bornapour, Seyyed Mohammad & Saboori, Hedayat, 2024. "Standalone hybrid power-hydrogen system incorporating daily-seasonal green hydrogen storage and hydrogen refueling station," Energy, Elsevier, vol. 295(C).
- Nikolakakis, Thomas & Fthenakis, Vasilis, 2011. "The optimum mix of electricity from wind- and solar-sources in conventional power systems: Evaluating the case for New York State," Energy Policy, Elsevier, vol. 39(11), pages 6972-6980.
- Garcia G., Matias & Oliva H., Sebastian, 2023. "Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile," Energy, Elsevier, vol. 278(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2023. "Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity," Energy, Elsevier, vol. 279(C).
- Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
- Campos, José & Csontos, Csaba & Munkácsy, Béla, 2023. "Electricity scenarios for Hungary: Possible role of wind and solar resources in the energy transition," Energy, Elsevier, vol. 278(PB).
- Zhang, Xiaofeng & Xia, Peng & Peng, Fen & Xiao, Min & Zhao, Tingbo & Fu, Ang & Wang, Meng & Sun, Xiaoqin, 2024. "Multiple spatial-temporal scales assessment of solar and wind resources potential integrating geospatial-technology-correlation indicators: A case study of Hunan Province," Energy, Elsevier, vol. 304(C).
- Xu, Hang & Zhang, Juntao & Cheng, Chuntian & Cao, Hui & Lu, Jia & Zhang, Zheng, 2024. "A novel metric for evaluating hydro-wind-solar energy complementarity," Applied Energy, Elsevier, vol. 373(C).
- Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
- Li, Canbing & Chen, Dawei & Li, Yingjie & Li, Furong & Li, Ran & Wu, Qiuwei & Liu, Xubin & Wei, Juan & He, Shengtao & Zhou, Bin & Allen, Stephen, 2022. "Exploring the interaction between renewables and energy storage for zero-carbon electricity systems," Energy, Elsevier, vol. 261(PA).
- Ashfaq, Asad & Ianakiev, Anton, 2018. "Cost-minimised design of a highly renewable heating network for fossil-free future," Energy, Elsevier, vol. 152(C), pages 613-626.
- Ashfaq, Asad & Kamali, Zulqarnain Haider & Agha, Mujtaba Hassan & Arshid, Hirra, 2017. "Heat coupling of the pan-European vs. regional electrical grid with excess renewable energy," Energy, Elsevier, vol. 122(C), pages 363-377.
- Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
- Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
- Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
- Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
- Sinn, Hans-Werner, 2017.
"Buffering volatility: A study on the limits of Germany's energy revolution,"
European Economic Review, Elsevier, vol. 99(C), pages 130-150.
- Hans-Werner Sinn, 2016. "Buffering Volatility: A Study on the Limits of Germany’s Energy Revolution," NBER Working Papers 22467, National Bureau of Economic Research, Inc.
- Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," Munich Reprints in Economics 49895, University of Munich, Department of Economics.
- Hans-Werner Sinn, 2016. "Buffering Volatility: A Study on the Limits of Germany's Energy Revolution," CESifo Working Paper Series 5950, CESifo.
- Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019.
"Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
- Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," Renewable Energy, Elsevier, vol. 139(C), pages 80-101.
- Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
- Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
- Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
- Rasmussen, Morten Grud & Andresen, Gorm Bruun & Greiner, Martin, 2012. "Storage and balancing synergies in a fully or highly renewable pan-European power system," Energy Policy, Elsevier, vol. 51(C), pages 642-651.
- Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "The Demand Side Management Potential to Balance a Highly Renewable European Power System," Energies, MDPI, vol. 9(11), pages 1-14, November.
More about this item
Keywords
Wind-solar coupling system; Renewable energy; Optimal design; Hydrogen energy storage; CRITIC-TOPSIS; Qingdao;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035680. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.