IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3715-d1701243.html
   My bibliography  Save this article

Assessment of Spatiotemporal Wind Complementarity

Author

Listed:
  • Dirk Schindler

    (Environmental Meteorology, University of Freiburg, Werthmannstrasse 10, D-79085 Freiburg, Germany)

  • Jonas Wehrle

    (Environmental Meteorology, University of Freiburg, Werthmannstrasse 10, D-79085 Freiburg, Germany)

  • Leon Sander

    (Environmental Meteorology, University of Freiburg, Werthmannstrasse 10, D-79085 Freiburg, Germany)

  • Christopher Schlemper

    (Das Grüne Emissionshaus, Goethestrasse 4, D-79100 Freiburg, Germany)

  • Kai Bekel

    (Das Grüne Emissionshaus, Goethestrasse 4, D-79100 Freiburg, Germany)

  • Christopher Jung

    (Environmental Meteorology, University of Freiburg, Werthmannstrasse 10, D-79085 Freiburg, Germany)

Abstract

This study investigates whether combining singular value decomposition with wavelet analysis can provide new insights into the spatiotemporal complementarity between wind turbine sites, surpassing previous findings. Earlier studies predominantly relied on various forms of correlation analysis to quantify complementarity. While correlation analysis offers a way to compute global metrics summarizing the relationship between entire time series, it inherently overlooks localized and time-specific patterns. The proposed approach overcomes these limitations by enabling the identification of spatially explicit and temporally resolved complementarity patterns across a large number of wind turbine sites in the study area. Because complementarity information is derived from orthogonal components obtained through singular value decomposition of a wind power density matrix, there is no need to adjust for phase shifts between sites. Moreover, the complementary contributions of these components to overall wind power density are expressed in watts per square meter, directly reflecting the magnitude of the analyzed data. This facilitates a site-specific, complementarity-optimized strategy for further wind energy expansion.

Suggested Citation

  • Dirk Schindler & Jonas Wehrle & Leon Sander & Christopher Schlemper & Kai Bekel & Christopher Jung, 2025. "Assessment of Spatiotemporal Wind Complementarity," Energies, MDPI, vol. 18(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3715-:d:1701243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2023. "Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity," Energy, Elsevier, vol. 279(C).
    2. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    3. Chen, Zhuo & Li, Wei & Wang, Xiaoxuan & Bai, Jingjie & Wang, Xiuquan & Guo, Junhong, 2024. "Evaluating wind and solar complementarity in China: Considering climate change and source-load matching dynamics," Energy, Elsevier, vol. 312(C).
    4. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).
    5. Luz, Thiago & Moura, Pedro, 2019. "100% Renewable energy planning with complementarity and flexibility based on a multi-objective assessment," Applied Energy, Elsevier, vol. 255(C).
    6. Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).
    7. Jung, Christopher & Schindler, Dirk, 2018. "On the inter-annual variability of wind energy generation – A case study from Germany," Applied Energy, Elsevier, vol. 230(C), pages 845-854.
    8. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2020. "Spatial and temporal correlation analysis of wind power between different provinces in China," Energy, Elsevier, vol. 191(C).
    9. Christopher Jung & Dirk Schindler, 2022. "Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor," Nature Energy, Nature, vol. 7(7), pages 608-619, July.
    10. Viviescas, Cindy & Lima, Lucas & Diuana, Fabio A. & Vasquez, Eveline & Ludovique, Camila & Silva, Gabriela N. & Huback, Vanessa & Magalar, Leticia & Szklo, Alexandre & Lucena, André F.P. & Schaeffer, , 2019. "Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kaźmierczak, Bartosz & Kuriqi, Alban & Bloomfield, Hannah & Hingray, Benoit & Canales, Fausto A. & Hunt, Julian D. & Sterl, Sebastian & Elkade, 2024. "Complementarity of wind and solar power in North Africa: Potential for alleviating energy droughts and impacts of the North Atlantic Oscillation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. H.C. Bloomfield & D.J. Brayshaw & A. Troccoli & C.M. Goodess & M. de Felice & L. Dubus & P.E. Bett & Yves-Marie Saint-Drenan, 2021. "Quantifying the sensitivity of european power systems to energy scenarios and climate change projections," Post-Print hal-03113026, HAL.
    13. Aifeng Lv & Taohui Li & Wenxiang Zhang & Yonghao Liu, 2022. "Spatiotemporal Distribution and Complementarity of Wind and Solar Energy in China," Energies, MDPI, vol. 15(19), pages 1-16, October.
    14. Nir Y. Krakauer & Daniel S. Cohan, 2017. "Interannual Variability and Seasonal Predictability of Wind and Solar Resources," Resources, MDPI, vol. 6(3), pages 1-14, July.
    15. Siddique, Muhammad Bilal & Thakur, Jagruti, 2020. "Assessment of curtailed wind energy potential for off-grid applications through mobile battery storage," Energy, Elsevier, vol. 201(C).
    16. Garrido-Perez, Jose M. & Ordóñez, Carlos & Barriopedro, David & García-Herrera, Ricardo & Paredes, Daniel, 2020. "Impact of weather regimes on wind power variability in western Europe," Applied Energy, Elsevier, vol. 264(C).
    17. Xiong, Hualin & Xu, Beibei & Kheav, Kimleng & Luo, Xingqi & Zhang, Xingjin & Patelli, Edoardo & Guo, Pengcheng & Chen, Diyi, 2021. "Multiscale power fluctuation evaluation of a hydro-wind-photovoltaic system," Renewable Energy, Elsevier, vol. 175(C), pages 153-166.
    18. Drücke, Jaqueline & Borsche, Michael & James, Paul & Kaspar, Frank & Pfeifroth, Uwe & Ahrens, Bodo & Trentmann, Jörg, 2021. "Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification," Renewable Energy, Elsevier, vol. 164(C), pages 1254-1266.
    19. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    20. Bloomfield, H.C. & Brayshaw, D.J. & Troccoli, A. & Goodess, C.M. & De Felice, M. & Dubus, L. & Bett, P.E. & Saint-Drenan, Y.-M., 2021. "Quantifying the sensitivity of european power systems to energy scenarios and climate change projections," Renewable Energy, Elsevier, vol. 164(C), pages 1062-1075.
    21. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    22. Hou, Wenjuan & Zhang, Xueliang & Wu, Maowei & Yuxin Feng, & Yang, Linsheng, 2022. "Integrating stability and complementarity to assess the accommodable generation potential of multiscale solar and wind resources: A case study in a resource-based area in China," Energy, Elsevier, vol. 261(PB).
    23. Théodore Desiré Tchokomani Moukam & Akira Sugawara & Yuancheng Li & Yakubu Bello, 2025. "An Evaluation of the Power System Stability for a Hybrid Power Plant Using Wind Speed and Cloud Distribution Forecasts," Energies, MDPI, vol. 18(6), pages 1-21, March.
    24. Han, Shuang & Zhang, Lu-na & Liu, Yong-qian & Zhang, Hao & Yan, Jie & Li, Li & Lei, Xiao-hui & Wang, Xu, 2019. "Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio," Applied Energy, Elsevier, vol. 236(C), pages 973-984.
    25. Delbeke, Oscar & Moschner, Jens D. & Driesen, Johan, 2023. "The complementarity of offshore wind and floating photovoltaics in the Belgian North Sea, an analysis up to 2100," Renewable Energy, Elsevier, vol. 218(C).
    26. Sun, Qian & Che, Jinxing & Hu, Kun & Qin, Wen, 2025. "Deterministic and probabilistic wind speed forecasting using decomposition methods: Accuracy and uncertainty," Renewable Energy, Elsevier, vol. 243(C).
    27. Canul-Reyes, D.A. & Rodríguez-Hernández, O. & Barragán-Peña, M.E. & del Rio, J.A., 2025. "Analysis of offshore wind energy and solar photovoltaic production and its relationship with regional electricity demand in the Yucatan peninsula," Energy, Elsevier, vol. 314(C).
    28. Wei Fang & Cheng Yang & Dengfeng Liu & Qiang Huang & Bo Ming & Long Cheng & Lu Wang & Gang Feng & Jianan Shang, 2023. "Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces: Insights from ERA5 Reanalysis," Energies, MDPI, vol. 16(20), pages 1-23, October.
    29. Handschy, Mark A. & Rose, Stephen & Apt, Jay, 2017. "Is it always windy somewhere? Occurrence of low-wind-power events over large areas," Renewable Energy, Elsevier, vol. 101(C), pages 1124-1130.
    30. Diana Cantor & Andrés Ochoa & Oscar Mesa, 2022. "Total Variation-Based Metrics for Assessing Complementarity in Energy Resources Time Series," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    31. Raynaud, D. & Hingray, B. & François, B. & Creutin, J.D., 2018. "Energy droughts from variable renewable energy sources in European climates," Renewable Energy, Elsevier, vol. 125(C), pages 578-589.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    2. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Karadöl, İsrafil & Yıldız, Ceyhun & Şekkeli, Mustafa, 2021. "Determining optimal spatial and temporal complementarity between wind and hydropower," Energy, Elsevier, vol. 230(C).
    4. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    5. Wei Fang & Cheng Yang & Dengfeng Liu & Qiang Huang & Bo Ming & Long Cheng & Lu Wang & Gang Feng & Jianan Shang, 2023. "Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces: Insights from ERA5 Reanalysis," Energies, MDPI, vol. 16(20), pages 1-23, October.
    6. Chen, Zhuo & Li, Wei & Wang, Xiaoxuan & Bai, Jingjie & Wang, Xiuquan & Guo, Junhong, 2024. "Evaluating wind and solar complementarity in China: Considering climate change and source-load matching dynamics," Energy, Elsevier, vol. 312(C).
    7. Diana Cantor & Andrés Ochoa & Oscar Mesa, 2022. "Total Variation-Based Metrics for Assessing Complementarity in Energy Resources Time Series," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    8. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    9. Jakub Jurasz & Jerzy Mikulik & Paweł B. Dąbek & Mohammed Guezgouz & Bartosz Kaźmierczak, 2021. "Complementarity and ‘Resource Droughts’ of Solar and Wind Energy in Poland: An ERA5-Based Analysis," Energies, MDPI, vol. 14(4), pages 1-24, February.
    10. Lei, Hongxuan & Liu, Pan & Cheng, Qian & Xu, Huan & Liu, Weibo & Zheng, Yalian & Chen, Xiangding & Zhou, Yong, 2024. "Frequency, duration, severity of energy drought and its propagation in hydro-wind-photovoltaic complementary systems," Renewable Energy, Elsevier, vol. 230(C).
    11. Christopher Jung & Dirk Schindler, 2023. "Reasons for the Recent Onshore Wind Capacity Factor Increase," Energies, MDPI, vol. 16(14), pages 1-17, July.
    12. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    13. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    14. Elkadeem, Mohamed R. & Younes, Ali & Jurasz, Jakub & AlZahrani, Atif S. & Abido, Mohammad A., 2025. "A spatio-temporal decision-making model for solar, wind, and hybrid systems – A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 383(C).
    15. Kapica, Jacek & Jurasz, Jakub & Canales, Fausto A. & Bloomfield, Hannah & Guezgouz, Mohammed & De Felice, Matteo & Zbigniew, Kobus, 2024. "The potential impact of climate change on European renewable energy droughts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Graczyk, Dariusz & Pińskwar, Iwona & Choryński, Adam & Stasik, Rafał, 2024. "Less power when more is needed. Climate-related current and possible future problems of the wind energy sector in Poland," Renewable Energy, Elsevier, vol. 232(C).
    17. Reinhold Lehneis, 2025. "Effects of Climate Change on Wind Power Generation: A Case Study for the German Bight," Energies, MDPI, vol. 18(13), pages 1-13, June.
    18. Xu, Hang & Zhang, Juntao & Cheng, Chuntian & Cao, Hui & Lu, Jia & Zhang, Zheng, 2024. "A novel metric for evaluating hydro-wind-solar energy complementarity," Applied Energy, Elsevier, vol. 373(C).
    19. Canul-Reyes, D.A. & Rodríguez-Hernández, O. & Barragán-Peña, M.E. & del Rio, J.A., 2025. "Analysis of offshore wind energy and solar photovoltaic production and its relationship with regional electricity demand in the Yucatan peninsula," Energy, Elsevier, vol. 314(C).
    20. Wang, Fengjuan & Xu, Jiuping & Wang, Qingchun, 2024. "Complementary operation based sizing and scheduling strategy for hybrid hydro-PV-wind generation systems connected to long-distance transmission lines," Applied Energy, Elsevier, vol. 364(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3715-:d:1701243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.