IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125001776.html
   My bibliography  Save this article

Deterministic and probabilistic wind speed forecasting using decomposition methods: Accuracy and uncertainty

Author

Listed:
  • Sun, Qian
  • Che, Jinxing
  • Hu, Kun
  • Qin, Wen

Abstract

Wind energy is gaining in importance as a source of renewable energy. However, because wind speed is intermittent, integrating wind energy into the grid requires accurate forecasts. This paper tests several forecasting models based on decomposition, using data from two representative sea-land sites, Fujian and Inner Mongolia. It also analyzes the diverse uncertainty perspective of probability distributions and the role of causal factors. The main finding is that a method based on extreme machine learning achieves greater forecast accuracy than other decomposition-based methods. A further finding is that the uncertainty associated with forecasts can vary as a function of the model, and more specifically, the decomposition method. The results of experiments show that the optimal forecasting model for Fujian and Inner Mongolia wind speed is EMD-SE-WT-PSO-ELM and CEEMDAN-SE-WT-PSO-ELM respectively, with error indicator improvement rates both exceeding 27.99 %. However, in the long-term forecasts for the next 4 h, VMD-SE-WT-PSO-ELM gave the best forecasts, with goodness-of-fit above 90 % in all cases.

Suggested Citation

  • Sun, Qian & Che, Jinxing & Hu, Kun & Qin, Wen, 2025. "Deterministic and probabilistic wind speed forecasting using decomposition methods: Accuracy and uncertainty," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001776
    DOI: 10.1016/j.renene.2025.122515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125001776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Long Cai & Jie Gu & Jinghuan Ma & Zhijian Jin, 2019. "Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees," Energies, MDPI, vol. 12(1), pages 1-19, January.
    2. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    3. Zhao, Ning & Su, Yi & Dai, Xianxing & Jia, Shaomin & Wang, Xuewei, 2024. "A new decomposition-ensemble strategy fusion with correntropy optimization learning algorithms for short-term wind speed prediction," Applied Energy, Elsevier, vol. 369(C).
    4. Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
    5. Emeksiz, Cem & Tan, Mustafa, 2022. "Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach," Energy, Elsevier, vol. 238(PA).
    6. Wang, Han & Han, Shuang & Liu, Yongqian & Yan, Jie & Li, Li, 2019. "Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system," Applied Energy, Elsevier, vol. 237(C), pages 1-10.
    7. Hou, Guolian & Wang, Junjie & Fan, Yuzhen & Zhang, Jianhua & Huang, Congzhi, 2024. "A novel wind power deterministic and interval prediction framework based on the critic weight method, improved northern goshawk optimization, and kernel density estimation," Renewable Energy, Elsevier, vol. 226(C).
    8. Bessa, Ricardo J. & Miranda, V. & Botterud, A. & Zhou, Z. & Wang, J., 2012. "Time-adaptive quantile-copula for wind power probabilistic forecasting," Renewable Energy, Elsevier, vol. 40(1), pages 29-39.
    9. Liu, Fa & Sun, Fubao & Wang, Xunming, 2023. "Impact of turbine technology on wind energy potential and CO2 emission reduction under different wind resource conditions in China," Applied Energy, Elsevier, vol. 348(C).
    10. Zheng, Yi & Wang, Jiawei & You, Shi & Li, Ximei & Bindner, Henrik W. & Münster, Marie, 2023. "Data-driven scheme for optimal day-ahead operation of a wind/hydrogen system under multiple uncertainties," Applied Energy, Elsevier, vol. 329(C).
    11. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirk Schindler & Jonas Wehrle & Leon Sander & Christopher Schlemper & Kai Bekel & Christopher Jung, 2025. "Assessment of Spatiotemporal Wind Complementarity," Energies, MDPI, vol. 18(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    2. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    3. Ahmed H. A. Elkasem & Mohamed Khamies & Gaber Magdy & Ibrahim B. M. Taha & Salah Kamel, 2021. "Frequency Stability of AC/DC Interconnected Power Systems with Wind Energy Using Arithmetic Optimization Algorithm-Based Fuzzy-PID Controller," Sustainability, MDPI, vol. 13(21), pages 1-29, November.
    4. Yingying He & Likai Zhang & Tengda Guan & Zheyu Zhang, 2024. "An Integrated CEEMDAN to Optimize Deep Long Short-Term Memory Model for Wind Speed Forecasting," Energies, MDPI, vol. 17(18), pages 1-29, September.
    5. Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
    6. Zheng, Xidong & Zhou, Sheng & Jin, Tao, 2023. "A new machine learning-based approach for cross-region coupled wind-storage integrated systems identification considering electricity demand response and data integration: A new provincial perspective," Energy, Elsevier, vol. 283(C).
    7. Heng, Jiani & Hong, Yongmiao & Hu, Jianming & Wang, Shouyang, 2022. "Probabilistic and deterministic wind speed forecasting based on non-parametric approaches and wind characteristics information," Applied Energy, Elsevier, vol. 306(PA).
    8. Wang, Xuguang & Li, Xiao & Su, Jie, 2023. "Distribution drift-adaptive short-term wind speed forecasting," Energy, Elsevier, vol. 273(C).
    9. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    10. Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
    11. Cai, Xiangjun & Li, Dagang & Zou, Yuntao & Liu, Zhichun & Heidari, Ali Asghar & Chen, Huiling, 2025. "A hybrid wind speed forecasting model with rolling mapping decomposition and temporal convolutional networks," Energy, Elsevier, vol. 324(C).
    12. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    13. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    14. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Fernando M. Camilo & Paulo J. Santos & Armando J. Pires, 2025. "Entropy-Based Uncertainty in Onshore and Offshore Wind Power: Implications for Economic Reliability," Energies, MDPI, vol. 18(10), pages 1-16, May.
    17. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Stefanos Tampakakis & Dimitrios Zafirakis, 2023. "On the Value of Emerging, Day-Ahead Market Related Wind-Storage Narratives in Greece: An Early Empirical Analysis," Energies, MDPI, vol. 16(8), pages 1-19, April.
    19. Samuel Asante Gyamerah & Victor Owusu, 2024. "Short- and long-term weather prediction based on a hybrid of CEEMDAN, LMD, and ANN," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-23, July.
    20. Wang, Han & Yan, Jie & Han, Shuang & Liu, Yongqian, 2020. "Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs," Renewable Energy, Elsevier, vol. 157(C), pages 256-272.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.