A hybrid wind speed forecasting model with rolling mapping decomposition and temporal convolutional networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135673
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Yu, Lean & Ma, Yueming & Ma, Mengyao, 2021. "An effective rolling decomposition-ensemble model for gasoline consumption forecasting," Energy, Elsevier, vol. 222(C).
- Jiang, Wenjun & Lin, Pengfei & Liang, Yang & Gao, Huanxiang & Zhang, Dongqin & Hu, Gang, 2023. "A novel hybrid deep learning model for multi-step wind speed forecasting considering pairwise dependencies among multiple atmospheric variables," Energy, Elsevier, vol. 285(C).
- Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
- Zheng, Jingwei & Wang, Jianzhou, 2024. "Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure algorithm," Energy, Elsevier, vol. 293(C).
- Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
- Xiangjun Cai & Dagang Li & Li Feng, 2024. "Enhanced Carbon Price Forecasting Using Extended Sliding Window Decomposition with LSTM and SVR," Mathematics, MDPI, vol. 12(23), pages 1-20, November.
- Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
- Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
- Xiaofeng Xu & Ziru Lin & Xiang Li & Changjing Shang & Qiang Shen, 2022. "Multi-objective robust optimisation model for MDVRPLS in refined oil distribution," International Journal of Production Research, Taylor & Francis Journals, vol. 60(22), pages 6772-6792, November.
- Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).
- Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).
- Joseph, Lionel P. & Deo, Ravinesh C. & Casillas-Pérez, David & Prasad, Ramendra & Raj, Nawin & Salcedo-Sanz, Sancho, 2024. "Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model," Applied Energy, Elsevier, vol. 359(C).
- Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
- Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
- Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
- Wang, Yamin & Wu, Lei, 2016. "On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation," Energy, Elsevier, vol. 112(C), pages 208-220.
- Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
- Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
- Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
- Emeksiz, Cem & Tan, Mustafa, 2022. "Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN)," Energy, Elsevier, vol. 249(C).
- Shukur, Osamah Basheer & Lee, Muhammad Hisyam, 2015. "Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA," Renewable Energy, Elsevier, vol. 76(C), pages 637-647.
- Yang, Mao & Li, Xiangyu & Fan, Fulin & Wang, Bo & Su, Xin & Ma, Chenglian, 2024. "Two-stage day-ahead multi-step prediction of wind power considering time-series information interaction," Energy, Elsevier, vol. 312(C).
- Yang, Mao & Che, Runqi & Yu, Xinnan & Su, Xin, 2024. "Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction," Energy, Elsevier, vol. 302(C).
- Shi, Xinjie & Wang, Jianzhou & Zhang, Bochen, 2024. "A fuzzy time series forecasting model with both accuracy and interpretability is used to forecast wind power," Applied Energy, Elsevier, vol. 353(PA).
- Hu, Huanling & Wang, Lin & Zhang, Dabin & Ling, Liwen, 2023. "Rolling decomposition method in fusion with echo state network for wind speed forecasting," Renewable Energy, Elsevier, vol. 216(C).
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Dongqin & Hu, Gang & Song, Jie & Gao, Huanxiang & Ren, Hehe & Chen, Wenli, 2024. "A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model," Energy, Elsevier, vol. 288(C).
- Wang, Shuai & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2021. "A novel combined model for wind speed prediction – Combination of linear model, shallow neural networks, and deep learning approaches," Energy, Elsevier, vol. 234(C).
- Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
- Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
- Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
- Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
- Yu, Haibo & Chang, Ling & Yang, Minghan & Chen, Shuai & Li, Huijuan & Wang, Jianye, 2025. "Time series modeling and forecasting with feature decomposition and interaction for prognostics and health management in nuclear power plant," Energy, Elsevier, vol. 324(C).
- Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
- Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
- Lu, Peng & Ye, Lin & Tang, Yong & Zhao, Yongning & Zhong, Wuzhi & Qu, Ying & Zhai, Bingxu, 2021. "Ultra-short-term combined prediction approach based on kernel function switch mechanism," Renewable Energy, Elsevier, vol. 164(C), pages 842-866.
- Tansu Filik, 2016. "Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(3), pages 1-15, March.
- Yukun Wang & Aiying Zhao & Xiaoxue Wei & Ranran Li, 2023. "A Novel Ensemble Model Based on an Advanced Optimization Algorithm for Wind Speed Forecasting," Energies, MDPI, vol. 16(14), pages 1-19, July.
- Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
- Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
- Yang, Rui & Liu, Hui & Nikitas, Nikolaos & Duan, Zhu & Li, Yanfei & Li, Ye, 2022. "Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach," Energy, Elsevier, vol. 239(PB).
- Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
- Leng, Zhiyuan & Chen, Lu & Yi, Bin & Liu, Fanqian & Xie, Tao & Mei, Ziyi, 2025. "Short-term wind speed forecasting based on a novel KANInformer model and improved dual decomposition," Energy, Elsevier, vol. 322(C).
- Jie Du & Shuaizhi Chen & Linlin Pan & Yubao Liu, 2025. "A Wind Speed Prediction Method Based on Signal Decomposition Technology Deep Learning Model," Energies, MDPI, vol. 18(5), pages 1-26, February.
- Jiang, Ping & Yang, Hufang & Heng, Jiani, 2019. "A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting," Applied Energy, Elsevier, vol. 235(C), pages 786-801.
- Vairagade, Vikrant S. & Bahoria, Boskey & Bangre, Abhishek & Uparkar, Satyajit & Pethe, Yoginee S. & Shelare, Sagar D. & Sharma, Shubham & Bisht, Yashwant Singh & Sharma, Manish & Kulshreshta, Ankur &, 2025. "Multi-criteria decision-making approaches to resource optimization in renewable energy systems," Renewable Energy, Elsevier, vol. 245(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225013155. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.