IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas030626192301379x.html
   My bibliography  Save this article

A fuzzy time series forecasting model with both accuracy and interpretability is used to forecast wind power

Author

Listed:
  • Shi, Xinjie
  • Wang, Jianzhou
  • Zhang, Bochen

Abstract

Considering the current research focus on the interpretability and efficiency of wind speed prediction models, this research presents a novel prediction model for dynamic non-stationary fuzzy time series. The proposed model aims to effectively improve prediction accuracy and address the issues of low interpretability and excessive data preprocessing. Unlike existing mainstream hybrid systems for wind speed prediction, this model provides detailed explanations for almost every prediction step and eliminates the need for cumbersome data preprocessing steps. To improve the prediction accuracy of the proposed model, this research incorporates non-stationary sets to overcome the limitations of fuzzy time series in adapting to long-term changes. The developed algorithm, SFTSM, dynamically adjusts the fuzzy time series prediction to effectively address long-term prediction challenges. Furthermore, this study introduces an enhanced version of the artificial hummingbird algorithm, called SLG-AHA, to further improve the accuracy and stability of fuzzy time series prediction. Experimental results using data from the Shandong Penglai wind farm in China validate the effectiveness of the proposed model by showcasing its superior prediction accuracy and stability.

Suggested Citation

  • Shi, Xinjie & Wang, Jianzhou & Zhang, Bochen, 2024. "A fuzzy time series forecasting model with both accuracy and interpretability is used to forecast wind power," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s030626192301379x
    DOI: 10.1016/j.apenergy.2023.122015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301379X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    2. Hao Wu & Haiming Long & Jiancheng Jiang, 2025. "Mixed-Order Fuzzy Time Series Forecast," Mathematics, MDPI, vol. 13(11), pages 1-15, May.
    3. Rao, Amar & Kumar, Satish & Karim, Sitara, 2024. "Accelerating renewables: Unveiling the role of green energy markets," Applied Energy, Elsevier, vol. 366(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    2. Zongwei Zhang & Lianlei Lin & Sheng Gao & Junkai Wang & Hanqing Zhao & Hangyi Yu, 2025. "A machine learning model for hub-height short-term wind speed prediction," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    3. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    4. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    5. Huang, Xiaojia & Wang, Chen & Zhang, Shenghui, 2024. "Research and application of a Model selection forecasting system for wind speed and theoretical power generation in wind farms based on classification and wind conversion," Energy, Elsevier, vol. 293(C).
    6. Yan Chen & Miaolin Yu & Haochong Wei & Huanxing Qi & Yiming Qin & Xiaochun Hu & Rongxing Jiang, 2025. "A Lightweight Framework for Rapid Response to Short-Term Forecasting of Wind Farms Using Dual Scale Modeling and Normalized Feature Learning," Energies, MDPI, vol. 18(3), pages 1-20, January.
    7. Asim Kumar Sarker & Abul Kalam Azad & Mohammad G. Rasul & Arun Teja Doppalapudi, 2023. "Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review," Energies, MDPI, vol. 16(3), pages 1-17, February.
    8. Wang, Yaqi & Zhao, Xiaomeng & Li, Zheng & Zhu, Wenbo & Gui, Renzhou, 2024. "A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement," Energy, Elsevier, vol. 312(C).
    9. Zheng, Xidong & Zhou, Sheng & Jin, Tao, 2023. "A new machine learning-based approach for cross-region coupled wind-storage integrated systems identification considering electricity demand response and data integration: A new provincial perspective," Energy, Elsevier, vol. 283(C).
    10. Jialin Liu & Chen Gong & Suhua Chen & Nanrun Zhou, 2023. "Multi-Step-Ahead Wind Speed Forecast Method Based on Outlier Correction, Optimized Decomposition, and DLinear Model," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    11. Wu, Binrong & Wang, Lin, 2024. "Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting," Energy, Elsevier, vol. 288(C).
    12. Yang, Wendong & Zang, Xinyi & Wu, Chunying & Hao, Yan, 2024. "A new multi-objective ensemble wind speed forecasting system: Mixed-frequency interval-valued modeling paradigm," Energy, Elsevier, vol. 304(C).
    13. Ban, Guihua & Chen, Yan & Xiong, Zhenhua & Zhuo, Yixin & Huang, Kui, 2024. "The univariate model for long-term wind speed forecasting based on wavelet soft threshold denoising and improved Autoformer," Energy, Elsevier, vol. 290(C).
    14. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    15. Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
    16. Ke Zhang & Xiao Li & Jie Su, 2022. "Variable Support Segment-Based Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 15(11), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s030626192301379x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.