IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3287-d1685658.html
   My bibliography  Save this article

Effects of Climate Change on Wind Power Generation: A Case Study for the German Bight

Author

Listed:
  • Reinhold Lehneis

    (Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH—UFZ, Permoserstraße 15, 04318 Leipzig, Germany)

Abstract

Driven by the demands of climate change mitigation, many countries have begun large-scale electricity production from variable renewables, such as solar PV and wind power. Electricity production from wind turbines, in particular, strongly depends on local weather conditions and their changes caused by climate change. Thus, for many countries with a high share of wind power generation, such as Germany, two essential questions arise: how will climate change affect electricity production, and how strong will be this impact for different RCPs? To better assess the impact on existing onshore wind turbines, spatially and temporally resolved data on their power generation are required. In order to create such disaggregated data, this study uses a physical simulation model and climate data modified for the RCP 2.6, RCP 4.5, and RCP 8.5 scenarios. To investigate the effects on a significant region with very high wind power generation in Germany, the numerical simulations were carried out on an ensemble of 22 onshore wind turbines with an installed capacity of 65.5 MW in the German Bight. After model validation, the power generation from this turbine ensemble was simulated for the high-wind year 2008 and the low-wind year 2010. The simulation results are presented with a high temporal resolution, and the observed changes are discussed for the applied RCPs. In summary, the resulting wind power generation of the entire plant ensemble decreases with increasing RCP to values of up to nearly 3 GWh for both years.

Suggested Citation

  • Reinhold Lehneis, 2025. "Effects of Climate Change on Wind Power Generation: A Case Study for the German Bight," Energies, MDPI, vol. 18(13), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3287-:d:1685658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3287/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3287/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    2. Jussi Ekström & Matti Koivisto & Ilkka Mellin & Robert John Millar & Matti Lehtonen, 2018. "A Statistical Modeling Methodology for Long-Term Wind Generation and Power Ramp Simulations in New Generation Locations," Energies, MDPI, vol. 11(9), pages 1-18, September.
    3. Reinhold Lehneis & Daniela Thrän, 2024. "In 50 Shades of Orange: Germany’s Photovoltaic Power Generation Landscape," Energies, MDPI, vol. 17(16), pages 1-12, August.
    4. Ravestein, P. & van der Schrier, G. & Haarsma, R. & Scheele, R. & van den Broek, M., 2018. "Vulnerability of European intermittent renewable energy supply to climate change and climate variability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 497-508.
    5. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    6. H.C. Bloomfield & D.J. Brayshaw & A. Troccoli & C.M. Goodess & M. de Felice & L. Dubus & P.E. Bett & Yves-Marie Saint-Drenan, 2021. "Quantifying the sensitivity of european power systems to energy scenarios and climate change projections," Post-Print hal-03113026, HAL.
    7. Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
    8. Drücke, Jaqueline & Borsche, Michael & James, Paul & Kaspar, Frank & Pfeifroth, Uwe & Ahrens, Bodo & Trentmann, Jörg, 2021. "Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification," Renewable Energy, Elsevier, vol. 164(C), pages 1254-1266.
    9. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    10. Bloomfield, H.C. & Brayshaw, D.J. & Troccoli, A. & Goodess, C.M. & De Felice, M. & Dubus, L. & Bett, P.E. & Saint-Drenan, Y.-M., 2021. "Quantifying the sensitivity of european power systems to energy scenarios and climate change projections," Renewable Energy, Elsevier, vol. 164(C), pages 1062-1075.
    11. Bowen Li & Sukanta Basu & Simon J. Watson & Herman W. J. Russchenberg, 2021. "A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas," Energies, MDPI, vol. 14(20), pages 1-14, October.
    12. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    13. Reinhold Lehneis, 2025. "The Electricity Generation Landscape of Bioenergy in Germany," Energies, MDPI, vol. 18(6), pages 1-12, March.
    14. Paul A. Griffin, 2020. "Energy finance must account for extreme weather risk," Nature Energy, Nature, vol. 5(2), pages 98-100, February.
    15. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    16. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
    2. Reinhold Lehneis, 2025. "The Electricity Generation Landscape of Bioenergy in Germany," Energies, MDPI, vol. 18(6), pages 1-12, March.
    3. Manske, David & Lehneis, Reinhold & Thrän, Daniela, 2025. "The landscape of the renewable electricity supply - Municipal contributions to Germany's energy transition," Renewable Energy, Elsevier, vol. 240(C).
    4. Reinhold Lehneis & Falk Harnisch & Daniela Thrän, 2024. "Electricity Production Landscape of Run-of-River Power Plants in Germany," Resources, MDPI, vol. 13(12), pages 1-12, December.
    5. Becker, Raik & Thrän, Daniela, 2017. "Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors," Applied Energy, Elsevier, vol. 208(C), pages 252-262.
    6. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    7. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    9. de Aquino Ferreira, Saulo Custodio & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina, 2022. "Validation of the representativeness of wind speed time series obtained from reanalysis data for Brazilian territory," Energy, Elsevier, vol. 258(C).
    10. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    11. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    12. Dirk Schindler & Jonas Wehrle & Leon Sander & Christopher Schlemper & Kai Bekel & Christopher Jung, 2025. "Assessment of Spatiotemporal Wind Complementarity," Energies, MDPI, vol. 18(14), pages 1-21, July.
    13. Kena Likassa Nefabas & Lennart Söder & Mengesha Mamo & Jon Olauson, 2021. "Modeling of Ethiopian Wind Power Production Using ERA5 Reanalysis Data," Energies, MDPI, vol. 14(9), pages 1-17, April.
    14. Reinhold Lehneis & Daniela Thrän, 2024. "In 50 Shades of Orange: Germany’s Photovoltaic Power Generation Landscape," Energies, MDPI, vol. 17(16), pages 1-12, August.
    15. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    16. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    17. Lu, Yongquan & Liu, Guilin & Xian, Yuyang & Tang, Jiaqi & Zhong, Liming, 2024. "Climate change brings both opportunities and challenges to rural revitalization in China: Evidence from apple geographical indication predictions," Agricultural Systems, Elsevier, vol. 216(C).
    18. Pedro Pérez-Cutillas & Pedro Baños Páez & Isabel Banos-González, 2020. "Variability of Water Balance under Climate Change Scenarios. Implications for Sustainability in the Rhône River Basin," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    19. Bilal, Hazrat & Siwar, Chamhuri & Mokhtar, Mazlin Bin & Lahlou, Fatima-Zahra & Kanniah, Kasturi Devi & Al-Ansari, Tareq, 2024. "Snow runoff modelling in the upper Indus River Basin and its implication to energy water food nexus," Ecological Modelling, Elsevier, vol. 498(C).
    20. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3287-:d:1685658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.