IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3239-d1115796.html
   My bibliography  Save this article

Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany

Author

Listed:
  • Reinhold Lehneis

    (Department of Bioenergy, Helmholtz Centre for Environmental Research GmbH—UFZ, Permoserstraße 15, 04318 Leipzig, Germany)

  • Daniela Thrän

    (Department of Bioenergy, Helmholtz Centre for Environmental Research GmbH—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
    Bioenergy Systems Department, DBFZ Deutsches Biomasseforschungszentrum gGmbH, Torgauer Str. 116, 04347 Leipzig, Germany)

Abstract

Temporally and spatially resolved data on wind power generation are very useful for studying the technical and economic aspects of this variable renewable energy at local and regional levels. Due to the lack of disaggregated electricity data from onshore and offshore turbines in Germany, it is necessary to use numerical simulations to calculate the power generation for a given geographic area and time period. This study shows how such a simulation model, which uses freely available plant and weather data as input variables, can be developed with the help of basic atmospheric laws and specific power curves of wind turbines. The wind power model is then applied to ensembles of nearly 28,000 onshore and 1500 offshore turbines to simulate the wind power generation in Germany for the years 2019 and 2020. For both periods, the obtained and spatially aggregated time series are in good agreement with the measured feed-in patterns for the whole of Germany. Such disaggregated simulation results can be used to analyze the power generation at any spatial scale, as each turbine is simulated separately with its location and technical parameters. This paper also presents the daily resolved wind power generation and associated indicators at the federal state level.

Suggested Citation

  • Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3239-:d:1115796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3239/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    2. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    3. Jussi Ekström & Matti Koivisto & Ilkka Mellin & Robert John Millar & Matti Lehtonen, 2018. "A Statistical Modeling Methodology for Long-Term Wind Generation and Power Ramp Simulations in New Generation Locations," Energies, MDPI, vol. 11(9), pages 1-18, September.
    4. Ritter, Matthias & Deckert, Lars, 2017. "Site assessment, turbine selection, and local feed-in tariffs through the wind energy index," Applied Energy, Elsevier, vol. 185(P2), pages 1087-1099.
    5. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2017. "Temporally-explicit and spatially-resolved global onshore wind energy potentials," Energy, Elsevier, vol. 131(C), pages 207-217.
    6. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    7. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    8. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    9. Ottenburger, Sadeeb Simon & Çakmak, Hüseyin Kemal & Jakob, Wilfried & Blattmann, Andreas & Trybushnyi, Dmytro & Raskob, Wolfgang & Kühnapfel, Uwe & Hagenmeyer, Veit, 2020. "A novel optimization method for urban resilient and fair power distribution preventing critical network states," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    10. Raik Becker & Daniela Thrän, 2018. "Optimal Siting of Wind Farms in Wind Energy Dominated Power Systems," Energies, MDPI, vol. 11(4), pages 1-12, April.
    11. Engelhorn, Thorsten & Müsgens, Felix, 2018. "How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany," Energy Economics, Elsevier, vol. 72(C), pages 542-557.
    12. González-Aparicio, I. & Monforti, F. & Volker, P. & Zucker, A. & Careri, F. & Huld, T. & Badger, J., 2017. "Simulating European wind power generation applying statistical downscaling to reanalysis data," Applied Energy, Elsevier, vol. 199(C), pages 155-168.
    13. Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Jung & Dirk Schindler, 2023. "Reasons for the Recent Onshore Wind Capacity Factor Increase," Energies, MDPI, vol. 16(14), pages 1-17, July.
    2. Danial Esmaeili Aliabadi & David Manske & Lena Seeger & Reinhold Lehneis & Daniela Thrän, 2023. "Integrating Knowledge Acquisition, Visualization, and Dissemination in Energy System Models: BENOPTex Study," Energies, MDPI, vol. 16(13), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    2. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    3. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. de Aquino Ferreira, Saulo Custodio & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina, 2022. "Validation of the representativeness of wind speed time series obtained from reanalysis data for Brazilian territory," Energy, Elsevier, vol. 258(C).
    6. Langer, Jannis & Zaaijer, Michiel & Quist, Jaco & Blok, Kornelis, 2023. "Introducing site selection flexibility to technical and economic onshore wind potential assessments: New method with application to Indonesia," Renewable Energy, Elsevier, vol. 202(C), pages 320-335.
    7. Kena Likassa Nefabas & Lennart Söder & Mengesha Mamo & Jon Olauson, 2021. "Modeling of Ethiopian Wind Power Production Using ERA5 Reanalysis Data," Energies, MDPI, vol. 14(9), pages 1-17, April.
    8. González-Aparicio, I. & Monforti, F. & Volker, P. & Zucker, A. & Careri, F. & Huld, T. & Badger, J., 2017. "Simulating European wind power generation applying statistical downscaling to reanalysis data," Applied Energy, Elsevier, vol. 199(C), pages 155-168.
    9. Matti Koivisto & Kaushik Das & Feng Guo & Poul Sørensen & Edgar Nuño & Nicolaos Cutululis & Petr Maule, 2019. "Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    10. Rabbani, R. & Zeeshan, M., 2020. "Exploring the suitability of MERRA-2 reanalysis data for wind energy estimation, analysis of wind characteristics and energy potential assessment for selected sites in Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 1240-1251.
    11. Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
    12. Louise Christine Dammeier & Joyce H. C. Bosmans & Mark A. J. Huijbregts, 2023. "Variability in greenhouse gas footprints of the global wind farm fleet," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 272-282, February.
    13. Emily Cowin & Changlong Wang & Stuart D. C. Walsh, 2023. "Assessing Predictions of Australian Offshore Wind Energy Resources from Reanalysis Datasets," Energies, MDPI, vol. 16(8), pages 1-21, April.
    14. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    15. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    16. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    17. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.
    18. Murcia, Juan Pablo & Koivisto, Matti Juhani & Luzia, Graziela & Olsen, Bjarke T. & Hahmann, Andrea N. & Sørensen, Poul Ejnar & Als, Magnus, 2022. "Validation of European-scale simulated wind speed and wind generation time series," Applied Energy, Elsevier, vol. 305(C).
    19. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    20. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3239-:d:1115796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.