IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022407.html
   My bibliography  Save this article

The landscape of the renewable electricity supply - Municipal contributions to Germany's energy transition

Author

Listed:
  • Manske, David
  • Lehneis, Reinhold
  • Thrän, Daniela

Abstract

Germany has made significant progress towards a renewable and climate-neutral energy system at the federal and state levels, but there is a lack of information on the local use of renewable electricity. To assess the decentralized contributions of renewable electricity to local and total gross electricity consumption, and to gain insight into how the renewable electricity landscape are evolving on the ground, a method was developed to balance renewable electricity generation and gross electricity consumption at the municipal level on an annual basis. A rural-urban and a north-south divide was identified in renewable electricity generation and gross electricity consumption. Municipalities with a population density of more than 100 inhabitants per km2, which represent about 88 % of the total population in Germany, will cover only 22 % of their gross electricity consumption with locally generated renewable electricity in 2019. The majority of renewable electricity is produced in sparsely populated regions, mostly in the northern and eastern parts of Germany, far from the southern and western centers of electricity consumption. The approach developed thus provides comprehensive insights into local contributions to the energy transition and enables detailed monitoring and assessment of renewable energy development and utilization based on population and land area data.

Suggested Citation

  • Manske, David & Lehneis, Reinhold & Thrän, Daniela, 2025. "The landscape of the renewable electricity supply - Municipal contributions to Germany's energy transition," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022407
    DOI: 10.1016/j.renene.2024.122172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Carattini, Stefano & Figge, Béla & Gordan, Alexander & Löschel, Andreas, 2024. "Municipal building codes and the adoption of solar photovoltaics," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    2. Jochen Diekmann & Wolf-Peter Schill & Andreas Püttner & Marion Walker & Sven Kirrmann & Magnus Maier, 2019. "Vergleich der Bundesländer: Analyse der Erfolgsfaktoren für den Ausbau der Erneuerbaren Energien 2019: Indikatoren und Ranking; Endbericht," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 127, number pbk145.
    3. Ulf Liebe & Geesche M. Dobers, 2020. "Measurement of Fairness Perceptions in Energy Transition Research: A Factorial Survey Approach," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    4. Sonnberger, Marco & Ruddat, Michael, 2017. "Local and socio-political acceptance of wind farms in Germany," Technology in Society, Elsevier, vol. 51(C), pages 56-65.
    5. Huebner, Gesche & Shipworth, David & Hamilton, Ian & Chalabi, Zaid & Oreszczyn, Tadj, 2016. "Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviours and attitudes," Applied Energy, Elsevier, vol. 177(C), pages 692-702.
    6. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    7. van der Schoor, Tineke & Scholtens, Bert, 2015. "Power to the people: Local community initiatives and the transition to sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 666-675.
    8. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit, 2016. "The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 838-845.
    9. Reinhold Lehneis & Daniela Thrän, 2024. "In 50 Shades of Orange: Germany’s Photovoltaic Power Generation Landscape," Energies, MDPI, vol. 17(16), pages 1-12, August.
    10. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    11. Marcus Eichhorn & Mattes Scheftelowitz & Matthias Reichmuth & Christian Lorenz & Kyriakos Louca & Alexander Schiffler & Rita Keuneke & Martin Bauschmann & Jens Ponitka & David Manske & Daniela Thrän, 2019. "Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany," Data, MDPI, vol. 4(1), pages 1-15, February.
    12. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    13. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
    14. Barragán-Escandón, Edgar A. & Zalamea-León, Esteban F. & Terrados-Cepeda, Julio & Vanegas-Peralta, P.F., 2020. "Energy self-supply estimation in intermediate cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    15. David Manske & Lukas Grosch & Julius Schmiedt & Nora Mittelstädt & Daniela Thrän, 2022. "Geo-Locations and System Data of Renewable Energy Installations in Germany," Data, MDPI, vol. 7(9), pages 1-15, September.
    16. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    17. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    18. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    19. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
    20. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinhold Lehneis, 2025. "The Electricity Generation Landscape of Bioenergy in Germany," Energies, MDPI, vol. 18(6), pages 1-12, March.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Reinhold Lehneis & Falk Harnisch & Daniela Thrän, 2024. "Electricity Production Landscape of Run-of-River Power Plants in Germany," Resources, MDPI, vol. 13(12), pages 1-12, December.
    4. Reinhold Lehneis & Daniela Thrän, 2024. "In 50 Shades of Orange: Germany’s Photovoltaic Power Generation Landscape," Energies, MDPI, vol. 17(16), pages 1-12, August.
    5. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    6. Araujo-Vizuete, Gabriela & Robalino-López, Andrés & Mena-Nieto, Ángel, 2025. "Decoding urban energy use variability: A bottom-up approach in Ecuador," Energy, Elsevier, vol. 327(C).
    7. Hoelzen, J. & Silberhorn, D. & Schenke, F. & Stabenow, E. & Zill, T. & Bensmann, A. & Hanke-Rauschenbach, R., 2025. "H2-powered aviation – Optimized aircraft and green LH2 supply in air transport networks," Applied Energy, Elsevier, vol. 380(C).
    8. Becker, Raik & Thrän, Daniela, 2017. "Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors," Applied Energy, Elsevier, vol. 208(C), pages 252-262.
    9. Razzaq, Asif & Ajaz, Tahseen & Li, Jing Claire & Irfan, Muhammad & Suksatan, Wanich, 2021. "Investigating the asymmetric linkages between infrastructure development, green innovation, and consumption-based material footprint: Novel empirical estimations from highly resource-consuming economi," Resources Policy, Elsevier, vol. 74(C).
    10. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    11. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.
    12. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
    13. Philip Tafarte & Annedore Kanngießer & Martin Dotzauer & Benedikt Meyer & Anna Grevé & Markus Millinger, 2020. "Interaction of Electrical Energy Storage, Flexible Bioenergy Plants and System-friendly Renewables in Wind- or Solar PV-dominated Regions," Energies, MDPI, vol. 13(5), pages 1-25, March.
    14. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    15. Khalili, Siavash & Lopez, Gabriel & Breyer, Christian, 2025. "Role and trends of flexibility options in 100% renewable energy system analyses towards the Power-to-X Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    16. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    17. Denis Juma & Josiah Munda & Charles Kabiri, 2023. "Power-System Flexibility: A Necessary Complement to Variable Renewable Energy Optimal Capacity Configuration," Energies, MDPI, vol. 16(21), pages 1-24, November.
    18. Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 108, pages 259-279.
    19. Zeyen, Elisabeth & Hagenmeyer, Veit & Brown, Tom, 2021. "Mitigating heat demand peaks in buildings in a highly renewable European energy system," Energy, Elsevier, vol. 231(C).
    20. Rey-Costa, Elona & Elliston, Ben & Green, Donna & Abramowitz, Gab, 2023. "Firming 100% renewable power: Costs and opportunities in Australia's National Electricity Market," Renewable Energy, Elsevier, vol. 219(P1).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.