IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v327y2025ics0360544225021012.html
   My bibliography  Save this article

Decoding urban energy use variability: A bottom-up approach in Ecuador

Author

Listed:
  • Araujo-Vizuete, Gabriela
  • Robalino-López, Andrés
  • Mena-Nieto, Ángel

Abstract

Energy consumption is crucial for economic development and individual well-being, particularly in densely populated urban areas. This study examines energy consumption patterns in Ecuadorian urban households using a bottom-up approach and clustering techniques to identify trends, socioeconomic disparities, and potential opportunities for demand management. Primary data from Quito (620 observations) and Guayaquil (474 observations) were used. A structured three-phase selection process successfully narrowed 48 initial variables to seven, significantly improving segmentation accuracy. The optimal 2-cluster solution revealed significant disparities in income, housing characteristics, and resource access. Income emerged as a key determinant of technology adoption and energy usage, highlighting socioeconomic gaps. The findings provide valuable insights for policymakers by emphasizing energy services' importance for economic and personal advancement. The reliance on fossil fuels and the pressing need for decarbonization necessitate transitioning to more sustainable energy systems. By identifying distinct consumption profiles and the influence of income on technology and energy usage, this study can inform demand management strategies, promote energy-saving initiatives, and facilitate the adoption of cleaner technologies. It is essential to raise awareness of the social impact of energy subsidies and to encourage a shift in consumer behavior through education and incentives for responsible energy consumption in Ecuador.

Suggested Citation

  • Araujo-Vizuete, Gabriela & Robalino-López, Andrés & Mena-Nieto, Ángel, 2025. "Decoding urban energy use variability: A bottom-up approach in Ecuador," Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225021012
    DOI: 10.1016/j.energy.2025.136459
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. González-Eguino, Mikel, 2015. "Energy poverty: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 377-385.
    2. Maria-del-Mar Alonso-Almeida & Alfredo Rocafort & Fernando Borrajo, 2016. "Shedding Light on Eco-Innovation in Tourism: A Critical Analysis," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    3. Véronique Vasseur & Anne-Francoise Marique & Vladimir Udalov, 2019. "A Conceptual Framework to Understand Households’ Energy Consumption," Energies, MDPI, vol. 12(22), pages 1-22, November.
    4. Ueno, Tsuyoshi & Inada, Ryo & Saeki, Osamu & Tsuji, Kiichiro, 2006. "Effectiveness of an energy-consumption information system for residential buildings," Applied Energy, Elsevier, vol. 83(8), pages 868-883, August.
    5. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    6. Troy Malatesta & Jessica K. Breadsell, 2022. "Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    7. Gyberg, Per & Palm, Jenny, 2009. "Influencing households' energy behaviour--how is this done and on what premises?," Energy Policy, Elsevier, vol. 37(7), pages 2807-2813, July.
    8. Robalino-López, Andrés & García-Ramos, José-Enrique & Golpe, Antonio A. & Mena-Nieto, Ángel, 2014. "System dynamics modelling and the environmental Kuznets curve in Ecuador (1980–2025)," Energy Policy, Elsevier, vol. 67(C), pages 923-931.
    9. Lee, Lisa Yu-Ting, 2013. "Household energy mix in Uganda," Energy Economics, Elsevier, vol. 39(C), pages 252-261.
    10. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    11. Bleischwitz, Raimund & Bahn-Walkowiak, Bettina & Irrek, Wolfgang & Schepelmann, Phillip & Schmidt-Bleek, Friedrich & Giljum, Stefan & Lutter, Stephan & Bohunovski, Lisa & Hinterberger, Friedrich & Haw, 2009. "Eco-Innovation - putting the EU on the path to a resource and energy efficient economy," Wuppertal Spezial, Wuppertal Institute for Climate, Environment and Energy, volume 38, number 38.
    12. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    13. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    14. Yue, Ting & Long, Ruyin & Chen, Hong & Zhao, Xin, 2013. "The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach," Applied Energy, Elsevier, vol. 112(C), pages 1510-1517.
    15. Camara, N’Famory & Xu, Deyi & Binyet, Emmanuel, 2018. "Enhancing household energy consumption: How should it be done?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 669-681.
    16. Henryson, Jessica & Hakansson, Teresa & Pyrko, Jurek, 2000. "Energy efficiency in buildings through information - Swedish perspective," Energy Policy, Elsevier, vol. 28(3), pages 169-180, March.
    17. Keho, Yaya, 2016. "What drives energy consumption in developing countries? The experience of selected African countries," Energy Policy, Elsevier, vol. 91(C), pages 233-246.
    18. Amendola, Marco & Lamperti, Francesco & Roventini, Andrea & Sapio, Alessandro, 2024. "Energy efficiency policies in an agent-based macroeconomic model," Structural Change and Economic Dynamics, Elsevier, vol. 68(C), pages 116-132.
    19. Chiu, Yi-Bin & Lee, Chien-Chiang, 2020. "Effects of financial development on energy consumption: The role of country risks," Energy Economics, Elsevier, vol. 90(C).
    20. Djavad Salehi-Isfahani & Bryce Wilson Stucki & Joshua Deutschmann, 2015. "The Reform of Energy Subsidies in Iran: The Role of Cash Transfers," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(6), pages 1144-1162, November.
    21. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    22. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    2. Yu, Yihua & Guo, Jin, 2016. "Identifying electricity-saving potential in rural China: Empirical evidence from a household survey," Energy Policy, Elsevier, vol. 94(C), pages 1-9.
    3. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying & Ji, Qiang, 2018. "Willingness to accept energy-saving measures and adoption barriers in the residential sector: An empirical analysis in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 56-73.
    4. Camara, N’Famory & Xu, Deyi & Binyet, Emmanuel, 2018. "Enhancing household energy consumption: How should it be done?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 669-681.
    5. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Analytical comparison between electricity consumption and behavioral characteristics of Swedish households in rented apartments," Applied Energy, Elsevier, vol. 90(1), pages 182-188.
    6. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    7. Ting Yue & Ruyin Long & Junli Liu & Haiwen Liu & Hong Chen, 2019. "Empirical Study on Households’ Energy-Conservation Behavior of Jiangsu Province in China: The Role of Policies and Behavior Results," IJERPH, MDPI, vol. 16(6), pages 1-16, March.
    8. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    9. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying, 2018. "Public acceptance of household energy-saving measures in Beijing: Heterogeneous preferences and policy implications," Energy Policy, Elsevier, vol. 113(C), pages 487-499.
    10. Stelian Stancu & Anca Maria Hristea & Camelia Kailani & Anca Cruceru & Denisa Bălă & Andreea Pernici, 2025. "Exploring Influencing Factors of Energy Efficiency and Curtailment: Approaches to Promoting Sustainable Behavior in Residential Context," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
    11. Quaglione, Davide & Cassetta, Ernesto & Crociata, Alessandro & Sarra, Alessandro, 2017. "Exploring additional determinants of energy-saving behaviour: The influence of individuals' participation in cultural activities," Energy Policy, Elsevier, vol. 108(C), pages 503-511.
    12. Kajsa Ellegård & Jenny Palm, 2015. "Who Is Behaving? Consequences for Energy Policy of Concept Confusion," Energies, MDPI, vol. 8(8), pages 1-20, July.
    13. Zhen Hu & Mei Wang & Zhe Cheng, 2022. "Mapping the knowledge development and trend of household energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6053-6071, May.
    14. Zhang, Yixiang & Wang, Zhaohua & Zhou, Guanghui, 2013. "Antecedents of employee electricity saving behavior in organizations: An empirical study based on norm activation model," Energy Policy, Elsevier, vol. 62(C), pages 1120-1127.
    15. Zeyen, Elisabeth & Hagenmeyer, Veit & Brown, Tom, 2021. "Mitigating heat demand peaks in buildings in a highly renewable European energy system," Energy, Elsevier, vol. 231(C).
    16. Quoc Nghi Nguyen & Thi Hong Loc Hoang & Van Nam Mai, 2022. "Applying the Theory of Planned Behavior to Analyze Household Energy-Saving Behavior," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 287-293, September.
    17. Małgorzata Poniatowska-Jaksch, 2021. "Energy Consumption in Central and Eastern Europe (CEE) Households in the Platform Economics," Energies, MDPI, vol. 14(4), pages 1-22, February.
    18. Hassan Harajli & Ali Chalak, 2019. "Willingness to Pay for Energy Efficient Appliances: The Case of Lebanese Consumers," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    19. De Nicolò, Michele & Fraccascia, Luca & Pontrandolfo, Pierpaolo, 2024. "How the energy procurement switching strategies (driven by the Russia-Ukraine conflict) impact the global sustainability? The global sustainability dashboard," Ecological Economics, Elsevier, vol. 225(C).
    20. Hu, Yaqi & Chen, Yingzi & Li, Yutong & Yang, Wanwan, 2025. "Age structure impacts on household carbon emissions: Based on a social interaction perspective," Ecological Economics, Elsevier, vol. 230(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225021012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.