IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3404-d1121964.html
   My bibliography  Save this article

Assessing Predictions of Australian Offshore Wind Energy Resources from Reanalysis Datasets

Author

Listed:
  • Emily Cowin

    (Civil Engineering, Monash University, Clayton 3800, Australia
    These authors contributed equally to this work.)

  • Changlong Wang

    (Civil Engineering, Monash University, Clayton 3800, Australia
    These authors contributed equally to this work.)

  • Stuart D. C. Walsh

    (Civil Engineering, Monash University, Clayton 3800, Australia
    These authors contributed equally to this work.)

Abstract

Offshore wind farms are a current area of interest in Australia due to their ability to support its transition to renewable energy. Climate reanalysis datasets that provide simulated wind speed data are frequently used to evaluate the potential of proposed offshore wind farm locations. However, there has been a lack of comparative studies of the accuracy of wind speed predictions from different reanalysis datasets for offshore wind farms in Australian waters. This paper assesses wind speed distribution accuracy and compares predictions of offshore wind turbine power output in Australia from three international reanalysis datasets: BARRA, ERA5, and MERRA-2. Pressure level data were used to determine wind speeds and capacity factors were calculated using a turbine bounding curve. Predictions across the datasets show consistent spatial and temporal variations in the predicted plant capacity factors, but the magnitudes differ substantially. Compared to weather station data, wind speed predictions from the BARRA dataset were found to be the most accurate, with a higher correlation and lower average error than ERA5 and MERRA-2. Significant variation was seen in predictions and there was a lack of similarity with weather station measurements, which highlights the need for additional site-based measurements.

Suggested Citation

  • Emily Cowin & Changlong Wang & Stuart D. C. Walsh, 2023. "Assessing Predictions of Australian Offshore Wind Energy Resources from Reanalysis Datasets," Energies, MDPI, vol. 16(8), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3404-:d:1121964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    2. Jensen, Cathrine Ulla & Panduro, Toke Emil & Lundhede, Thomas Hedemark & Nielsen, Anne Sofie Elberg & Dalsgaard, Mette & Thorsen, Bo Jellesmark, 2018. "The impact of on-shore and off-shore wind turbine farms on property prices," Energy Policy, Elsevier, vol. 116(C), pages 50-59.
    3. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    4. Arash Khatibi & Stefan Krauter, 2021. "Validation and Performance of Satellite Meteorological Dataset MERRA-2 for Solar and Wind Applications," Energies, MDPI, vol. 14(4), pages 1-17, February.
    5. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dario Maradin & Bojana Olgić Draženović & Saša Čegar, 2023. "The Efficiency of Offshore Wind Energy Companies in the European Countries: A DEA Approach," Energies, MDPI, vol. 16(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
    2. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Zhang, Juntao & Cheng, Chuntian & Yu, Shen, 2024. "Recognizing the mapping relationship between wind power output and meteorological information at a province level by coupling GIS and CNN technologies," Applied Energy, Elsevier, vol. 360(C).
    4. de Aquino Ferreira, Saulo Custodio & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina, 2022. "Validation of the representativeness of wind speed time series obtained from reanalysis data for Brazilian territory," Energy, Elsevier, vol. 258(C).
    5. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    6. Pflugfelder, Yannik & Kramer, Hendrik & Weber, Christoph, 2024. "A novel approach to generate bias-corrected regional wind infeed timeseries based on reanalysis data," Applied Energy, Elsevier, vol. 361(C).
    7. Radu, David & Berger, Mathias & Fonteneau, Raphaël & Hardy, Simon & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2019. "Complementarity assessment of south Greenland katabatic flows and West Europe wind regimes," Energy, Elsevier, vol. 175(C), pages 393-401.
    8. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    9. Gao, Yang & Meng, Yangyang & Dong, Guanpeng & Ma, Shaoxiu & Miao, Changhong & Xiao, Jianhua & Mao, Shuting & Shao, Lili, 2024. "The wind-solar hybrid energy could serve as a stable power source at multiple time scale in China mainland," Energy, Elsevier, vol. 305(C).
    10. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    11. Louise Christine Dammeier & Joyce H. C. Bosmans & Mark A. J. Huijbregts, 2023. "Variability in greenhouse gas footprints of the global wind farm fleet," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 272-282, February.
    12. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Mathews, Duncan & Ó Gallachóir, Brian & Deane, Paul, 2023. "Systematic bias in reanalysis-derived solar power profiles & the potential for error propagation in long duration energy storage studies," Applied Energy, Elsevier, vol. 336(C).
    14. José Rafael Dorrego Portela & Geovanni Hernández Galvez & Quetzalcoatl Hernandez-Escobedo & Ricardo Saldaña Flores & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & Pascual López de Paz & A, 2022. "Microscale Wind Assessment, Comparing Mesoscale Information and Observed Wind Data," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    15. Liu, Fa & Wang, Xunming & Sun, Fubao & Kleidon, Axel, 2023. "Potential impact of global stilling on wind energy production in China," Energy, Elsevier, vol. 263(PB).
    16. Gunnell, Yanni & Mietton, Michel & Touré, Amadou Abdourhamane & Fujiki, Kenji, 2023. "Potential for wind farming in West Africa from an analysis of daily peak wind speeds and a review of low-level jet dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Katikas, Loukas & Dimitriadis, Panayiotis & Koutsoyiannis, Demetris & Kontos, Themistoklis & Kyriakidis, Phaedon, 2021. "A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series," Applied Energy, Elsevier, vol. 295(C).
    18. Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).
    19. Langer, Jannis & Zaaijer, Michiel & Quist, Jaco & Blok, Kornelis, 2023. "Introducing site selection flexibility to technical and economic onshore wind potential assessments: New method with application to Indonesia," Renewable Energy, Elsevier, vol. 202(C), pages 320-335.
    20. Murcia, Juan Pablo & Koivisto, Matti Juhani & Luzia, Graziela & Olsen, Bjarke T. & Hahmann, Andrea N. & Sørensen, Poul Ejnar & Als, Magnus, 2022. "Validation of European-scale simulated wind speed and wind generation time series," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3404-:d:1121964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.