IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2442-d169796.html
   My bibliography  Save this article

A Statistical Modeling Methodology for Long-Term Wind Generation and Power Ramp Simulations in New Generation Locations

Author

Listed:
  • Jussi Ekström

    (Department of Electrical Engineering and Automation, Aalto University, FI-00076 AALTO, 02150 Espoo, Finland)

  • Matti Koivisto

    (Department of Wind Energy, Technical University of Denmark (DTU), 4000 Roskilde, Denmark)

  • Ilkka Mellin

    (Department of Mathematics and Systems Analysis, Aalto University, FI-00076 AALTO, 02150 Espoo, Finland)

  • Robert John Millar

    (Department of Electrical Engineering and Automation, Aalto University, FI-00076 AALTO, 02150 Espoo, Finland)

  • Matti Lehtonen

    (Department of Electrical Engineering and Automation, Aalto University, FI-00076 AALTO, 02150 Espoo, Finland)

Abstract

In future power systems, a large share of the energy will be generated with wind power plants (WPPs) and other renewable energy sources. With the increasing wind power penetration, the variability of the net generation in the system increases. Consequently, it is imperative to be able to assess and model the behavior of the WPP generation in detail. This paper presents an improved methodology for the detailed statistical modeling of wind power generation from multiple new WPPs without measurement data. A vector autoregressive based methodology, which can be applied to long-term Monte Carlo simulations of existing and new WPPs, is proposed. The proposed model improves the performance of the existing methodology and can more accurately analyze the temporal correlation structure of aggregated wind generation at the system level. This enables the model to assess the impact of new WPPs on the wind power ramp rates in a power system. To evaluate the performance of the proposed methodology, it is verified against hourly wind speed measurements from six locations in Finland and the aggregated wind power generation from Finland in 2015. Furthermore, a case study analyzing the impact of the geographical distribution of WPPs on wind power ramps is included.

Suggested Citation

  • Jussi Ekström & Matti Koivisto & Ilkka Mellin & Robert John Millar & Matti Lehtonen, 2018. "A Statistical Modeling Methodology for Long-Term Wind Generation and Power Ramp Simulations in New Generation Locations," Energies, MDPI, vol. 11(9), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2442-:d:169796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goić, R. & Krstulović, J. & Jakus, D., 2010. "Simulation of aggregate wind farm short-term production variations," Renewable Energy, Elsevier, vol. 35(11), pages 2602-2609.
    2. Ekström, Jussi & Koivisto, Matti & Mellin, Ilkka & Millar, John & Saarijärvi, Eero & Haarla, Liisa, 2015. "Assessment of large scale wind power generation with new generation locations without measurement data," Renewable Energy, Elsevier, vol. 83(C), pages 362-374.
    3. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    4. González-Longatt, F. & Wall, P. & Terzija, V., 2012. "Wake effect in wind farm performance: Steady-state and dynamic behavior," Renewable Energy, Elsevier, vol. 39(1), pages 329-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zucatelli, P.J. & Nascimento, E.G.S. & Santos, A.Á.B. & Arce, A.M.G. & Moreira, D.M., 2021. "An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay," Energy, Elsevier, vol. 230(C).
    2. Irina Meghea, 2023. "Comparison of Statistical Production Models for a Solar and a Wind Power Plant," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    3. Paula Medina Maçaira & Yasmin Monteiro Cyrillo & Fernando Luiz Cyrino Oliveira & Reinaldo Castro Souza, 2019. "Including Wind Power Generation in Brazil’s Long-Term Optimization Model for Energy Planning," Energies, MDPI, vol. 12(5), pages 1-20, March.
    4. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Briana & Hwangbo, Hoon & Zeng, Li & Ding, Yu, 2018. "Evaluation of alternative power production efficiency metrics for offshore wind turbines and farms," Renewable Energy, Elsevier, vol. 128(PA), pages 81-90.
    2. Ye, Lin & Zhao, Yongning & Zeng, Cheng & Zhang, Cihang, 2017. "Short-term wind power prediction based on spatial model," Renewable Energy, Elsevier, vol. 101(C), pages 1067-1074.
    3. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    4. Ekström, Jussi & Koivisto, Matti & Mellin, Ilkka & Millar, John & Saarijärvi, Eero & Haarla, Liisa, 2015. "Assessment of large scale wind power generation with new generation locations without measurement data," Renewable Energy, Elsevier, vol. 83(C), pages 362-374.
    5. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    6. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    7. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    8. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    9. Croonenbroeck, Carsten & Møller Dahl, Christian, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Discussion Papers 351, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    10. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    11. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    12. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    13. Álvarez-García, Francisco J. & Fresno-Schmolk, Gonzalo & OrtizBevia, María J. & Cabos, William & RuizdeElvira, Antonio, 2020. "Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula," Renewable Energy, Elsevier, vol. 159(C), pages 151-161.
    14. Jong-Hyeon Shin & Jong-Hwi Lee & Se-Myong Chang, 2019. "A Simplified Numerical Model for the Prediction of Wake Interaction in Multiple Wind Turbines," Energies, MDPI, vol. 12(21), pages 1-14, October.
    15. Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
    16. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    17. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    18. Barbarelli, Silvio & Florio, Gaetano & Lo Zupone, Giacomo & Scornaienchi, Nino Michele, 2018. "First techno-economic evaluation of array configuration of self-balancing tidal kinetic turbines," Renewable Energy, Elsevier, vol. 129(PA), pages 183-200.
    19. Srikanth Reddy, K. & Panwar, Lokesh & Panigrahi, B.K. & Kumar, Rajesh, 2018. "Modeling and analysis of profit based self scheduling of GENCO in electricity markets with renewable energy penetration and emission constraints," Renewable Energy, Elsevier, vol. 116(PA), pages 48-63.
    20. Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2442-:d:169796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.