IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v39y2012i1p329-338.html
   My bibliography  Save this article

Wake effect in wind farm performance: Steady-state and dynamic behavior

Author

Listed:
  • González-Longatt, F.
  • Wall, P.
  • Terzija, V.

Abstract

The aim of this paper is to evaluate the impact of the wake effect on both the steady-state operation and dynamic performance of a wind farm and provide conclusions that can be used as thumb rules in generic assessments where the full details of the wind farms are unknown. A simplified explicit model of the wake effect is presented, which includes: the cumulative impact of multiple shadowing, the effects of wind direction and the wind speed time delay. The model is implemented in MATLAB® and then integrated into a power system simulation package to describe the wake effect and its impact on a wind farm, particularly in terms of the wake coefficient and overall active power losses. Results for two wind farm layouts are presented to illustrate the importance of wind turbine spacing and the directionality of wind speeds when assessing the wake effect during steady-state operation and dynamic behavior.

Suggested Citation

  • González-Longatt, F. & Wall, P. & Terzija, V., 2012. "Wake effect in wind farm performance: Steady-state and dynamic behavior," Renewable Energy, Elsevier, vol. 39(1), pages 329-338.
  • Handle: RePEc:eee:renene:v:39:y:2012:i:1:p:329-338
    DOI: 10.1016/j.renene.2011.08.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111005155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.08.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kiranoudis, C.T. & Maroulis, Z.B., 1997. "Effective short-cut modelling of wind park efficiency," Renewable Energy, Elsevier, vol. 11(4), pages 439-457.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    3. Yang, Zhixue & Ren, Zhouyang & Li, Zhenwen & Xu, Yan & Li, Hui & Li, Wenyuan & Hu, Xiuqiong, 2022. "A comprehensive analysis method for levelized cost of energy in tidal current power generation farms," Renewable Energy, Elsevier, vol. 182(C), pages 982-991.
    4. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    5. Matthias Ritter & Simone Pieralli & Martin Odening, 2017. "Neighborhood Effects in Wind Farm Performance: A Regression Approach," Energies, MDPI, vol. 10(3), pages 1-16, March.
    6. Gonzalez-Rodriguez, Angel G. & Burgos-Payan, Manuel & Riquelme-Santos, Jesus & Serrano-Gonzalez, Javier, 2015. "Reducing computational effort in the calculation of annual energy produced in wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 656-665.
    7. Ouammi, Ahmed & Sacile, Roberto & Zejli, Driss & Mimet, Abdelaziz & Benchrifa, Rachid, 2010. "Sustainability of a wind power plant: Application to different Moroccan sites," Energy, Elsevier, vol. 35(10), pages 4226-4236.
    8. Ouammi, Ahmed & Ghigliotti, Valeria & Robba, Michela & Mimet, Abdelaziz & Sacile, Roberto, 2012. "A decision support system for the optimal exploitation of wind energy on regional scale," Renewable Energy, Elsevier, vol. 37(1), pages 299-309.
    9. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    10. Kiranoudis, C. T. & Voros, N. G. & Maroulis, Z. B., 2001. "Short-cut design of wind farms," Energy Policy, Elsevier, vol. 29(7), pages 567-578, June.
    11. Matthias Ritter & Simone Pieralli & HMartin Odening, 2016. "Neighborhood Effects in Wind Farm Performance: An Econometric Approach," SFB 649 Discussion Papers SFB649DP2016-012, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    12. Shaaban, S. & Albatal, A. & Mohamed, M.H., 2018. "Optimization of H-Rotor Darrieus turbines' mutual interaction in staggered arrangements," Renewable Energy, Elsevier, vol. 125(C), pages 87-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:39:y:2012:i:1:p:329-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.