IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021577.html
   My bibliography  Save this article

Numerical simulation and experimental study on cavitation and pressure fluctuation characteristics of low head pumped storage system under pump operating conditions

Author

Listed:
  • Jiao, Weixuan
  • Jia, Xuanwen
  • Cheng, Li
  • Xu, Jiameng
  • Liang, Ao
  • Fan, Haotian
  • Lu, Jiaxing

Abstract

Low-head pumped storage systems are essential components of renewable energy infrastructure due to their cost-effectiveness and operational flexibility. However, cavitation during the pump mode poses challenges to system stability and energy efficiency. This study combines experimental measurements with Computational Fluid Dynamics (CFD) simulations to investigate cavitation dynamics and associated pressure fluctuations characteristics in a 1:5.25 scaled model of a low-head pumped storage system. The results reveal that cavitation-induced pressure fluctuations are most pronounced at the impeller inlet and chamber, and the pressure fluctuations caused by cavitation result in changes in the number of pressure pulsation peaks and valleys at the impeller during a single rotation cycle. The guide vane exhibit intricate spectrum behaviors dominated by blade-passing frequencies as well as rotor-stator interactions. Meanwhile, high-frequency fluctuations observed at the guide vane outlet indicated significant vortex activity. The outlet bend is characterized by turbulent flow accompanied by energy losses, whereas the outlet passage sustained low-frequency fluctuations. Vortex structures show strong correlations with vapor formation, predominantly accumulating on blade pressure surfaces under low head conditions while extending toward suction surfaces at higher heads. Both experimental and numerical results demonstrate high consistency, featuring simulation errors below 4 %. This work underscores the necessity for real-time monitoring of critical components alongside adaptive operational protocols aimed at mitigating cavitation phenomena. The findings provide actionable strategies for optimizing system design and enhancing energy efficiency within renewable-integrated power grids.

Suggested Citation

  • Jiao, Weixuan & Jia, Xuanwen & Cheng, Li & Xu, Jiameng & Liang, Ao & Fan, Haotian & Lu, Jiaxing, 2025. "Numerical simulation and experimental study on cavitation and pressure fluctuation characteristics of low head pumped storage system under pump operating conditions," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021577
    DOI: 10.1016/j.energy.2025.136515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Gongcheng & Chen, Diyi & Liu, Zhang & Zhang, Yunpeng & Zhao, Ziwen, 2024. "Bursting oscillation behaviors of a multi-time scales pumped storage power station with governor subsystem nonlinearity," Renewable Energy, Elsevier, vol. 223(C).
    2. Canul-Reyes, D.A. & Rodríguez-Hernández, O. & Barragán-Peña, M.E. & del Rio, J.A., 2025. "Analysis of offshore wind energy and solar photovoltaic production and its relationship with regional electricity demand in the Yucatan peninsula," Energy, Elsevier, vol. 314(C).
    3. Yuan, Zhiyi & Zhang, Yongxue & Zhang, Jinya & Zhu, Jianjun, 2021. "Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 177(C), pages 1265-1281.
    4. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    5. Bai, Mingqi & Liu, Shuqi & Qi, Meng & Liu, Shangzhi & Shu, Chi-Min & Feng, Wei & Liu, Yi, 2024. "Optimization of wind-solar hybrid system based on energy stability of multiple time scales and uncertainty of renewable resources," Energy, Elsevier, vol. 313(C).
    6. Shi, Guangtai & Wang, Shan & Xiao, Yexiang & Liu, Zongku & Li, Helin & Liu, Xiaobing, 2021. "Effect of cavitation on energy conversion characteristics of a multiphase pump," Renewable Energy, Elsevier, vol. 177(C), pages 1308-1320.
    7. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    2. Lei, Shuaihao & Cheng, Li & Sheng, Weigao, 2025. "Study of energy dissipation mechanisms and pressure pulsation spectrums in a vertical axial flow pumping station on the ultra-low head condition based on multiple analysis methods," Energy, Elsevier, vol. 320(C).
    3. Gu, Yandong & Zhu, Qiyuan & Bian, Junjie & Wang, Qiliang & Cheng, Li, 2025. "Novel sealing design for high-speed coolant pumps: Impact on energy performance, axial thrust and flow field," Energy, Elsevier, vol. 321(C).
    4. Zhang, Xiaowen & Tang, Fangping & Pavesi, Giorgio & Hu, Chongyang & Song, Xijie, 2024. "Influence of gate cutoff effect on flow mode conversion and energy dissipation during power-off of prototype tubular pump system," Energy, Elsevier, vol. 308(C).
    5. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    6. Mu, Tong & Zhang, Rui & Xu, Hui & Fei, Zhaodan & Feng, Jiangang & Jin, Yan & Zheng, Yuan, 2023. "Improvement of energy performance of the axial-flow pump by groove flow control technology based on the entropy theory," Energy, Elsevier, vol. 274(C).
    7. Li, Yanyan & Sun, Longgang & Guo, Pengcheng, 2024. "Investigation of the transient characteristics of the Francis turbine during runaway process," Renewable Energy, Elsevier, vol. 237(PC).
    8. He, Jiawei & Si, Qiaorui & Sun, Wentao & Liu, Jinfeng & Miao, Senchun & Wang, Xiaohui & Wang, Peng & Wang, Chenguang, 2023. "Study on the energy loss characteristics of ultra-low specific speed PAT under different short blade lengths based on entropy production method," Energy, Elsevier, vol. 283(C).
    9. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Ye, Weixiang & Geng, Chen & Luo, Xianwu, 2022. "Unstable flow characteristics in vaneless region with emphasis on the rotor-stator interaction for a pump turbine at pump mode using large runner blade lean," Renewable Energy, Elsevier, vol. 185(C), pages 1343-1361.
    11. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    12. Lin, Yanpi & Li, Xiaojun & Zhu, Zuchao & Wang, Xunming & Lin, Tong & Cao, Haibin, 2022. "An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge," Energy, Elsevier, vol. 246(C).
    13. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
    14. Li, Zhenggui & Xu, Lixin & Wang, Dong & Li, Deyou & Li, Wangxu, 2023. "Simulation analysis of energy characteristics of flow field in the transition process of pump condition outage of pump-turbine," Renewable Energy, Elsevier, vol. 219(P1).
    15. Wang, Yuqi & Cheng, Li, 2025. "Research on the flow characteristics and energy variation characteristics of the outlet passage of a two-way flow pump device based on Liutex and energy balance equation method," Energy, Elsevier, vol. 318(C).
    16. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    17. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    18. Yang, Weifeng & Zhang, Renhui & Wang, Xiaoyuan & Guo, Guangqiang, 2025. "Cavitation-induced variations in vortex structure and energy conversion dynamics in a vortex pump," Energy, Elsevier, vol. 317(C).
    19. Zhang, Bowen & Cheng, Li & Jiao, Weixuan & Zhang, Di, 2023. "Experimental and statistical analysis of the flap gate energy loss and pressure fluctuation spatiotemporal characteristics of a mixed-flow pump device," Energy, Elsevier, vol. 272(C).
    20. Sun, Longyue & Pan, Qiang & Zhang, Desheng & Zhao, Ruijie & Esch, B.P.M.(Bart) van, 2022. "Numerical study of the energy loss in the bulb tubular pump system focusing on the off-design conditions based on combined energy analysis methods," Energy, Elsevier, vol. 258(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.