IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v272y2023ics036054422300511x.html
   My bibliography  Save this article

Experimental and statistical analysis of the flap gate energy loss and pressure fluctuation spatiotemporal characteristics of a mixed-flow pump device

Author

Listed:
  • Zhang, Bowen
  • Cheng, Li
  • Jiao, Weixuan
  • Zhang, Di

Abstract

A Flap gate is an essential device that cuts off the water flow, reduces energy consumption and ensures the safety of the pump unit. The characteristics of the flap gate energy loss and pressure fluctuation of the pump device are investigated based on the high-precision test rig. The results show that the residual circulation at the outlet of the pump section is one of the essential reasons for the energy loss of the flap gate. When the cut-off angle reaches 60° or above, the influence of the flap gate on the energy loss can be ignored. The pressure fluctuation at the inlet and outlet of the impeller and guide vane outlet with the flap fully open under multiple flowrates is mainly monitored. The probability density distribution of pressure fluctuation is close to normal distribution. Induced by the dynamic and static interference between the impeller and the guide vane, the blade passage frequency, shaft frequency and harmonic frequency are the main frequency components. The guide vane outlet has high fluctuation amplitude, maximum peak-to-peak value, and continuous 100–250 Hz high-frequency components. The high-frequency components may synchronize with the natural frequency of the pump unit, which will induce hydraulic resonance.

Suggested Citation

  • Zhang, Bowen & Cheng, Li & Jiao, Weixuan & Zhang, Di, 2023. "Experimental and statistical analysis of the flap gate energy loss and pressure fluctuation spatiotemporal characteristics of a mixed-flow pump device," Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:energy:v:272:y:2023:i:c:s036054422300511x
    DOI: 10.1016/j.energy.2023.127117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422300511X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    2. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    4. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    5. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    6. Virgel M. Arocena & Binoe E. Abuan & Joseph Gerard T. Reyes & Paul L. Rodgers & Louis Angelo M. Danao, 2021. "Numerical Investigation of the Performance of a Submersible Pump: Prediction of Recirculation, Vortex Formation, and Swirl Resulting from Off-Design Operating Conditions," Energies, MDPI, vol. 14(16), pages 1-21, August.
    7. Zhang, Di & Jiao, Weixuan & Cheng, Li & Xia, Chenzhi & Zhang, Bowen & Luo, Can & Wang, Chuan, 2021. "Experimental study on the evolution process of the roof-attached vortex of the closed sump," Renewable Energy, Elsevier, vol. 164(C), pages 1029-1038.
    8. Li, Wei & Li, Enda & Ji, Leilei & Zhou, Ling & Shi, Weidong & Zhu, Yong, 2020. "Mechanism and propagation characteristics of rotating stall in a mixed-flow pump," Renewable Energy, Elsevier, vol. 153(C), pages 74-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    2. Gu, Yandong & Bian, Junjie & Wang, Qiliang & Stephen, Christopher & Liu, Benqing & Cheng, Li, 2024. "Energy performance and pressure fluctuation in multi-stage centrifugal pump with floating impellers under various axial oscillation frequencies," Energy, Elsevier, vol. 307(C).
    3. Hongyin Zhang & Jianlong Liu & Jinxin Wu & Weixuan Jiao & Li Cheng & Mingbin Yuan, 2023. "Research on Optimization of the Bulb Form of the Bulb Tubular Pump Device for a Low-Head Agricultural Irrigation Pumping Station," Agriculture, MDPI, vol. 13(9), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Faye & Luo, Yongyao & Wang, Zhengwei, 2024. "Research on the starting-up process of a prototype reversible pump turbine with misaligned guide vanes: An energy loss analysis," Energy, Elsevier, vol. 304(C).
    2. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    3. Mu, Tong & Zhang, Rui & Xu, Hui & Fei, Zhaodan & Feng, Jiangang & Jin, Yan & Zheng, Yuan, 2023. "Improvement of energy performance of the axial-flow pump by groove flow control technology based on the entropy theory," Energy, Elsevier, vol. 274(C).
    4. Ye, Weixiang & Geng, Chen & Luo, Xianwu, 2022. "Unstable flow characteristics in vaneless region with emphasis on the rotor-stator interaction for a pump turbine at pump mode using large runner blade lean," Renewable Energy, Elsevier, vol. 185(C), pages 1343-1361.
    5. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    6. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
    7. Wang, Yuqi & Cheng, Li, 2025. "Research on the flow characteristics and energy variation characteristics of the outlet passage of a two-way flow pump device based on Liutex and energy balance equation method," Energy, Elsevier, vol. 318(C).
    8. Li, Wei & Huang, Yuxin & Ji, Leilei & Ma, Lingling & Agarwal, Ramesh K. & Awais, Muhammad, 2023. "Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump," Energy, Elsevier, vol. 271(C).
    9. Yifan Zhi & Qian Huang & Haonan Su & Huairui Li & Huazheng Chen & Qidi Ke & Qiang Fu, 2025. "An Analysis of the Characteristics of Internal Flow Losses of Seawater Circulation Pumps in Nuclear Power Plants Based on the Entropy Production Theory," Energies, MDPI, vol. 18(8), pages 1-16, April.
    10. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    11. Li, Wei & Ji, Leilei & Li, Enda & Shi, Weidong & Agarwal, Ramesh & Zhou, Ling, 2021. "Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition," Renewable Energy, Elsevier, vol. 167(C), pages 740-760.
    12. Wang, Like & Feng, Jianjun & Lu, Jinling & Zhu, Guojun & Wang, Wei, 2024. "Novel bionic wave-shaped tip clearance toward improving hydrofoil energy performance and suppressing tip leakage vortex," Energy, Elsevier, vol. 290(C).
    13. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    14. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    15. Lin, Yanpi & Li, Xiaojun & Zhu, Zuchao & Wang, Xunming & Lin, Tong & Cao, Haibin, 2022. "An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge," Energy, Elsevier, vol. 246(C).
    16. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    17. Ye, Weixiang & Ikuta, Akihiro & Chen, Yining & Miyagawa, Kazuyoshi & Luo, Xianwu, 2020. "Numerical simulation on role of the rotating stall on the hump characteristic in a mixed flow pump using modified partially averaged Navier-Stokes model," Renewable Energy, Elsevier, vol. 166(C), pages 91-107.
    18. Kan Kan & Qingying Zhang & Yuan Zheng & Hui Xu & Zhe Xu & Jianwei Zhai & Alexis Muhirwa, 2022. "Investigation into Influence of Wall Roughness on the Hydraulic Characteristics of an Axial Flow Pump as Turbine," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    19. Ye, Weixiang & Liu, Hao & Wang, Hong & Luo, Xianwu, 2025. "Towards the pumped-hydro energy storage: Improvement on the flow instability and cavitation performance with application-oriented forward skew angle of impeller blades," Energy, Elsevier, vol. 316(C).
    20. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:272:y:2023:i:c:s036054422300511x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.