IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225012526.html
   My bibliography  Save this article

Blade-vortex-interaction in an axial-flow pump sump: Impact on hydraulic performance and flow stability

Author

Listed:
  • Zhang, Bowen
  • Cheng, Li
  • Jiao, Weixuan
  • Luo, Can

Abstract

Axial-flow pump is a key hydraulic equipment for low-head tidal pumping stations. However, the harmful vortices in the sump seriously damage the energy efficiency characteristics of the pump and restrict the development of hydropower and sustainable energy. This study examines an axial-flow pump with a closed sump, using hydraulic and pressure fluctuation tests, and high-speed visualization to understand the interaction between the suction vortices and blades, and their effects on energy efficiency and pressure fluctuations. The interaction between the roof-attached vortex (RAV) and the impeller blades, referred to as blade-vortex interaction (BVI), encompasses three stages: preparation, expansion, and erosion. During expansion and erosion, small vortices grow into larger vortex tubes and create dense vortices on the blade's suction surface. BVI-induced pressure fluctuations are highly unstable with increasing amplitude, and the FFT spectrum, ranging from 0 to fBPF, shows strong harmonic peaks. Additionally, the wavelet spectrum's energy shifts from low to high frequencies due to the dominant nonlinear broadband caused by vortices. Upon the integration of a novel joint anti-vortex device (JAVD), the energy profile of the pump apparatus was enhanced, resulting in a maximum reduction of hydraulic loss by 0.18 m. The efficiency apparatus has markedly increased, with a peak improvement of 2.2 %. Furthermore, the pronounced pressure fluctuation at the sump's roof has been substantially mitigated.

Suggested Citation

  • Zhang, Bowen & Cheng, Li & Jiao, Weixuan & Luo, Can, 2025. "Blade-vortex-interaction in an axial-flow pump sump: Impact on hydraulic performance and flow stability," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012526
    DOI: 10.1016/j.energy.2025.135610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225012526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Han, Yadong & Tan, Lei, 2020. "Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 162(C), pages 144-150.
    2. Li, Lin & Tan, Dapeng & Wang, Tong & Yin, Zichao & Fan, Xinghua & Wang, Ronghui, 2021. "Multiphase coupling mechanism of free surface vortex and the vibration-based sensing method," Energy, Elsevier, vol. 216(C).
    3. Gu, Yandong & Bian, Junjie & Wang, Qiliang & Stephen, Christopher & Liu, Benqing & Cheng, Li, 2024. "Energy performance and pressure fluctuation in multi-stage centrifugal pump with floating impellers under various axial oscillation frequencies," Energy, Elsevier, vol. 307(C).
    4. Zhang, Bowen & Cheng, Li & Jiao, Weixuan & Zhang, Di, 2023. "Experimental and statistical analysis of the flap gate energy loss and pressure fluctuation spatiotemporal characteristics of a mixed-flow pump device," Energy, Elsevier, vol. 272(C).
    5. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    6. Sun, Longgang & Xu, Hongyang & Li, Chenxi & Guo, Pengcheng & Xu, Zhuofei, 2024. "Unsteady assessment and alleviation of inter-blade vortex in Francis turbine," Applied Energy, Elsevier, vol. 358(C).
    7. Song, Xijie & Liu, Chao, 2021. "Experimental study of the floor-attached vortices in pump sump using V3V," Renewable Energy, Elsevier, vol. 164(C), pages 752-766.
    8. Piyawat Sritram & Ratchaphon Suntivarakorn, 2021. "The Efficiency Comparison of Hydro Turbines for Micro Power Plant from Free Vortex," Energies, MDPI, vol. 14(23), pages 1-13, November.
    9. Shi, Lijian & Zhang, Wenpeng & Jiao, Haifeng & Tang, Fangping & Wang, Li & Sun, Dandan & Shi, Wei, 2020. "Numerical simulation and experimental study on the comparison of the hydraulic characteristics of an axial-flow pump and a full tubular pump," Renewable Energy, Elsevier, vol. 153(C), pages 1455-1464.
    10. Zhang, Wenwu & Chen, Zhenmu & Zhu, Baoshan & Zhang, Fei, 2020. "Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 154(C), pages 826-840.
    11. Zi, Dan & Wang, Fujun & Wang, Chaoyue & Huang, Congbin & Shen, Lian, 2021. "Investigation on the air-core vortex in a vertical hydraulic intake system," Renewable Energy, Elsevier, vol. 177(C), pages 1333-1345.
    12. Li, Lin & Lu, Bin & Xu, Weixin & Wang, Chengyan & Wu, Jiafeng & Tan, Dapeng, 2024. "Dynamic behaviors of multiphase vortex-induced vibration for hydropower energy conversion," Energy, Elsevier, vol. 308(C).
    13. Li, Zhixiang & Xu, Hui & Feng, Jiangang & Chen, Huixiang & Kan, Kan & Li, Tianyi & Shen, Lian, 2024. "Fluctuation characteristics induced by energetic coherent structures in air-core vortex: The most complex vortex in the tidal power station intake system," Energy, Elsevier, vol. 288(C).
    14. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuqi & Cheng, Li, 2025. "Research on the flow characteristics and energy variation characteristics of the outlet passage of a two-way flow pump device based on Liutex and energy balance equation method," Energy, Elsevier, vol. 318(C).
    2. Gu, Yandong & Bian, Junjie & Wang, Qiliang & Stephen, Christopher & Liu, Benqing & Cheng, Li, 2024. "Energy performance and pressure fluctuation in multi-stage centrifugal pump with floating impellers under various axial oscillation frequencies," Energy, Elsevier, vol. 307(C).
    3. Yan, Xiaotong & Kan, Kan & Zheng, Yuan & Xu, Zhe & Rossi, Mosè & Xu, Lianchen & Chen, Huixiang, 2024. "The vortex dynamics characteristics in a pump-turbine: A rigid vorticity analysis while varying guide vane openings in turbine mode," Energy, Elsevier, vol. 289(C).
    4. Yu, Shengping & Wang, Yuhu & Chen, Tairan & Li, Mingke & Zhang, Xiaoping & Huang, Biao & Xu, Jin & Wang, Guoyu, 2025. "An inclined groove and its optimization design method for improving the energy performance at the saddle zone of axial flow pumps," Energy, Elsevier, vol. 328(C).
    5. Liu, Ming & Tan, Lei & Zhao, Xuechu & Ma, Can & Gou, Jinlan, 2024. "Theoretical model on transient performance of a centrifugal pump under start-up conditions in pumped-storage system," Energy, Elsevier, vol. 299(C).
    6. Li, Wei & Pu, Wei & Ji, Leilei & Yang, Qiaoyue & He, Xinrui & Agarwal, Ramesh, 2024. "Mechanism of the impact of sediment particles on energy loss in mixed-flow pumps," Energy, Elsevier, vol. 304(C).
    7. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    8. Li, Lin & Tan, Dapeng & Yin, Zichao & Wang, Tong & Fan, Xinghua & Wang, Ronghui, 2021. "Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production," Renewable Energy, Elsevier, vol. 175(C), pages 887-909.
    9. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    10. Gu, Yandong & Zhu, Qiyuan & Bian, Junjie & Wang, Qiliang & Cheng, Li, 2025. "Novel sealing design for high-speed coolant pumps: Impact on energy performance, axial thrust and flow field," Energy, Elsevier, vol. 321(C).
    11. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    12. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    13. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    14. Cao, Puyu & Zhu, Rui & Yin, Gang, 2021. "Spike-type disturbances due to inlet distortion in a centrifugal pump," Renewable Energy, Elsevier, vol. 165(P1), pages 288-300.
    15. Wang, Wengjie & Wang, Hongyu & Pei, Ji & Chen, Jia & Gan, Xingcheng & Sun, Qin, 2025. "Artificial intelligence approach for energy and entropy analyses of a double-suction centrifugal pump," Energy, Elsevier, vol. 324(C).
    16. Li, Huichuang & Yang, Jiahang & Zhang, Wenwu & Hu, Liwei & Liang, Ao & Yao, Zhifeng, 2024. "Energy performance and unsteady gas-liquid flow characteristics of a multiphase rotodynamic pump: An experiment," Applied Energy, Elsevier, vol. 375(C).
    17. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    18. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    19. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    20. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.