IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021693.html
   My bibliography  Save this article

An inclined groove and its optimization design method for improving the energy performance at the saddle zone of axial flow pumps

Author

Listed:
  • Yu, Shengping
  • Wang, Yuhu
  • Chen, Tairan
  • Li, Mingke
  • Zhang, Xiaoping
  • Huang, Biao
  • Xu, Jin
  • Wang, Guoyu

Abstract

Energy conservation and emission reduction have become a global focus issue with the development of technology. Axial flow pumps, as an energy conversion device, play an important role in pumped storage and water source transportation. However, axial flow pumps experience severe energy loss under low flowrates, affecting the energy performance and stability of the hydraulic system. This paper proposed an inclined groove flow control method to improve the performance at the saddle zone. The performance was investigated experimentally and numerically with and without grooves. The result shows that inclined grooves significantly enhance the energy characteristics at the saddle zone, with a 56.5 % increase in head at 0.4Qdes and a 40.17 % increase at 0.5Qdes. The local low-pressure zone upstream and downstream of the inclined groove creates a reverse flow inside the groove, mixing with the mainstream in the inlet pipe and weakening the circumferential angular momentum. The improved inflow condition mitigates flow separation within the pump and suppresses the propagation of tip blockage vortex. Entropy production analysis reveals that inclined grooves effectively suppress energy losses in the inlet pipe. Moreover, a dimensionless number NOG is proposed for the design of the inclined grooves. It is found that the ideal NOG range is between 0.014 and 0.022, which optimizes energy performance in the saddle zone while minimizing negative effects under the design condition.

Suggested Citation

  • Yu, Shengping & Wang, Yuhu & Chen, Tairan & Li, Mingke & Zhang, Xiaoping & Huang, Biao & Xu, Jin & Wang, Guoyu, 2025. "An inclined groove and its optimization design method for improving the energy performance at the saddle zone of axial flow pumps," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021693
    DOI: 10.1016/j.energy.2025.136527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.