IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics036054422201533x.html
   My bibliography  Save this article

Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions

Author

Listed:
  • Kan, Kan
  • Xu, Zhe
  • Chen, Huixiang
  • Xu, Hui
  • Zheng, Yuan
  • Zhou, Daqing
  • Muhirwa, Alexis
  • Maxime, Binama

Abstract

Pump-as-turbine stations with ultra-low head often face the deterioration risk during load rejection operations when the demands in water delivery and power generation are satisfied. In the course of load rejection, significant energy transfer and hydraulic instability may ensue from the pump-to-turbine transition mode, and vice versa. In order to investigate the variation of energy loss during the transition process of a bidirectional axial-flow pump, the entropy production method is herein utilized for visualization and quantitative analysis of high energy loss regions within key components. In the process of transient simulation, the torque balance equation is applied for calculating the rotational speed of impeller. Two-way transitions are considered with the bidirectional pump for comparing two distinct forms of pumps equipped with front and rear guide vanes. Results show that the simulated external characteristic curves and transition parameters of the pump are in good accordance with the experimental data. The transient process of the transition successively goes through four modes, i.e. pump, braking, turbine and runaway modes. In the process of the direction switch of the main flow and rotation, the different positions of guide vanes also deeply influence the inflow angle and flow pattern in impeller, and then change the distribution of the pressure coefficient, vorticity and entropy production rate. In pump mode, the entropy production rate and pressure coefficient at the impeller inlet edge under backward transition condition (BTC) is higher than that under forward transition condition (FTC), due to the smaller inflow angle caused by the front guide vanes under BTC. In runaway operation, the total entropy production (TEP) under FTC is obviously higher than that under BTC, because the energy loss is reduced by the broken shedding vortices caused by the obstruction of the guide vanes under BTC. This study's results can be referred to while seeking for the operation safety and stability of the pump stations consecutively used to pump and generate power.

Suggested Citation

  • Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201533x
    DOI: 10.1016/j.energy.2022.124630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201533X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Cong & Zhang, Yongxue & Yuan, Zhiyi & Ji, Kaizhuo, 2020. "Development and application of the entropy production diagnostic model to the cavitation flow of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 774-785.
    2. Kan, Kan & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Binama, Maxime & Dai, Jing, 2021. "Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model," Renewable Energy, Elsevier, vol. 164(C), pages 109-121.
    3. Chirag Trivedi & Michel J. Cervantes & B. K. Gandhi, 2016. "Investigation of a High Head Francis Turbine at Runaway Operating Conditions," Energies, MDPI, vol. 9(3), pages 1-22, March.
    4. Kan, Kan & Yang, Zixuan & Lyu, Pin & Zheng, Yuan & Shen, Lian, 2021. "Numerical study of turbulent flow past a rotating axial-flow pump based on a level-set immersed boundary method," Renewable Energy, Elsevier, vol. 168(C), pages 960-971.
    5. Fu, Shifeng & Zheng, Yuan & Kan, Kan & Chen, Huixiang & Han, Xingxing & Liang, Xiaoling & Liu, Huiwen & Tian, Xiaoqing, 2020. "Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up," Renewable Energy, Elsevier, vol. 146(C), pages 1879-1887.
    6. Yang, Zhiyan & Cheng, Yongguang & Xia, Linsheng & Meng, Wanwan & Liu, Ke & Zhang, Xiaoxi, 2020. "Evolutions of flow patterns and pressure fluctuations in a prototype pump-turbine during the runaway transient process after pump-trip," Renewable Energy, Elsevier, vol. 152(C), pages 1149-1159.
    7. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    8. Shi, Lijian & Zhang, Wenpeng & Jiao, Haifeng & Tang, Fangping & Wang, Li & Sun, Dandan & Shi, Wei, 2020. "Numerical simulation and experimental study on the comparison of the hydraulic characteristics of an axial-flow pump and a full tubular pump," Renewable Energy, Elsevier, vol. 153(C), pages 1455-1464.
    9. Zhiyan Yang & Zirui Liu & Yongguang Cheng & Xiaoxi Zhang & Ke Liu & Linsheng Xia, 2020. "Differences of Flow Patterns and Pressure Pulsations in Four Prototype Pump-Turbines during Runaway Transient Processes," Energies, MDPI, vol. 13(20), pages 1-20, October.
    10. Lu, Jie & Qian, Zhongdong & Lee, Young-Ho, 2021. "Numerical investigation of unsteady characteristics of a pump turbine under runaway condition," Renewable Energy, Elsevier, vol. 169(C), pages 905-924.
    11. Jain, Sanjay V. & Patel, Rajesh N., 2014. "Investigations on pump running in turbine mode: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 841-868.
    12. Feng, Jianjun & Ge, Zhenguo & Zhang, Yu & Zhu, Guojun & Wu, Guangkuan & Lu, Jinling & Luo, Xingqi, 2021. "Numerical investigation on characteristics of transient process in centrifugal pumps during power failure," Renewable Energy, Elsevier, vol. 170(C), pages 267-276.
    13. Khan, Abid A. & Shahzad, Asim & Hayat, Imran & Miah, Md Salim, 2016. "Recovery of flow conditions for optimum electricity generation through micro hydro turbines," Renewable Energy, Elsevier, vol. 96(PA), pages 940-948.
    14. Abu-Hijleh, B.A/K & Abu-Qudais, M & Abu Nada, E, 1999. "Numerical prediction of entropy generation due to natural convection from a horizontal cylinder," Energy, Elsevier, vol. 24(4), pages 327-333.
    15. Khan, Abid A. & Khan, Abdul M. & Zahid, M. & Rizwan, R., 2013. "Flow acceleration by converging nozzles for power generation in existing canal system," Renewable Energy, Elsevier, vol. 60(C), pages 548-552.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yixiao Zhang & Eddie Yin Kwee Ng & Shivansh Mittal, 2023. "The Biffis Canal Hydrodynamic System Performance Study of Drag-Dominant Tidal Turbine Using Moment Balancing Method," Sustainability, MDPI, vol. 15(19), pages 1-24, September.
    2. Postacchini, Matteo & Di Giuseppe, Elisa & Eusebi, Anna Laura & Pelagalli, Leonardo & Darvini, Giovanna & Cipolletta, Giulia & Fatone, Francesco, 2022. "Energy saving from small-sized urban contexts: Integrated application into the domestic water cycle," Renewable Energy, Elsevier, vol. 199(C), pages 1300-1317.
    3. Chen, Weisheng & Xiang, Qiujie & Li, Yaojun & Liu, Zhuqing, 2023. "On the mechanisms of pressure drop and viscous losses in hydrofoil tip-clearance flows," Energy, Elsevier, vol. 269(C).
    4. Yurui Dai & Weidong Shi & Yongfei Yang & Zhanshan Xie & Qinghong Zhang, 2023. "Numerical Analysis of Unsteady Internal Flow Characteristics in a Bidirectional Axial Flow Pump," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
    5. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    6. Mu, Tong & Zhang, Rui & Xu, Hui & Fei, Zhaodan & Feng, Jiangang & Jin, Yan & Zheng, Yuan, 2023. "Improvement of energy performance of the axial-flow pump by groove flow control technology based on the entropy theory," Energy, Elsevier, vol. 274(C).
    7. Tang, Yang & Zhou, Minghai & Liu, Xiang & Li, Guangyao & Wang, Qiang & Wang, Guorong, 2023. "Study on throttling pressure control flow field for traction speed regulation and braking mechanism of the pipeline intelligent plugging robot," Energy, Elsevier, vol. 282(C).
    8. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    2. Xinfeng Ge & Jing Zhang & Jian Zhang & Demin Liu & Yuan Zheng & Huixiang Chen, 2022. "Review of Research on the Three-Dimensional Transition Process of Large-Scale Low-Lift Pump," Energies, MDPI, vol. 15(22), pages 1-34, November.
    3. Yu, An & Tang, Yibo & Tang, Qinghong & Cai, Jianguo & Zhao, Lei & Ge, Xinfeng, 2022. "Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory," Renewable Energy, Elsevier, vol. 183(C), pages 447-458.
    4. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    5. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    7. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    8. Liu, Demin & Zhang, Xiaoxi & Yang, Zhiyan & Liu, Ke & Cheng, Yongguang, 2021. "Evaluating the pressure fluctuations during load rejection of two pump-turbines in a prototype pumped-storage system by using 1D-3D coupled simulation," Renewable Energy, Elsevier, vol. 171(C), pages 1276-1289.
    9. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    10. Jin, Yongxin & Zhang, Desheng & Song, Wenwu & Shen, Xi & Shi, Lei & Lu, Jiaxing, 2022. "Numerical study on energy conversion characteristics of molten salt pump based on energy transport theory," Energy, Elsevier, vol. 244(PA).
    11. Zhao, Kunjie & Xu, Yanhe & Guo, Pengcheng & Qian, Zhongdong & Zhang, Yongchuan & Liu, Wei, 2022. "Multi-scale oscillation characteristics and stability analysis of pumped-storage unit under primary frequency regulation condition with low water head grid-connected," Renewable Energy, Elsevier, vol. 189(C), pages 1102-1119.
    12. Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    13. K., Subramanya & Chelliah, Thanga Raj, 2023. "Capability of synchronous and asynchronous hydropower generating systems: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    15. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    16. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    17. Zhiyan Yang & Zirui Liu & Yongguang Cheng & Xiaoxi Zhang & Ke Liu & Linsheng Xia, 2020. "Differences of Flow Patterns and Pressure Pulsations in Four Prototype Pump-Turbines during Runaway Transient Processes," Energies, MDPI, vol. 13(20), pages 1-20, October.
    18. Xiaoxia Hou & Yongguang Cheng & Zhiyan Yang & Ke Liu & Xiaoxi Zhang & Demin Liu, 2021. "Influence of Clearance Flow on Dynamic Hydraulic Forces of Pump-Turbine during Runaway Transient Process," Energies, MDPI, vol. 14(10), pages 1-20, May.
    19. Sun, Longyue & Pan, Qiang & Zhang, Desheng & Zhao, Ruijie & Esch, B.P.M.(Bart) van, 2022. "Numerical study of the energy loss in the bulb tubular pump system focusing on the off-design conditions based on combined energy analysis methods," Energy, Elsevier, vol. 258(C).
    20. Sarma, Kanak Chandra & Biswas, Agnimitra & Misra, Rahul Dev, 2022. "Experimental investigation of a two-bladed double stage Savonius-akin hydrokinetic turbine at low flow velocity conditions," Renewable Energy, Elsevier, vol. 187(C), pages 958-973.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201533x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.