IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000318.html
   My bibliography  Save this article

Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump

Author

Listed:
  • Li, Wei
  • Long, Yu
  • Ji, Leilei
  • Li, Haoming
  • Li, Shuo
  • Chen, Yunfei
  • Yang, Qiaoyue

Abstract

Mixed-flow pumps are highly susceptible to experiencing rotational stall and generating vortices, as well as unstable pressure fluctuations when operating at low flow rates. These issues lead to a decline in the stability and efficiency of pump systems. To address this challenge, this paper introduces a circumferential spoke structure as an alternative to the traditional “J-Groove” to delay the onset of rotational stall in mixed-flow pumps. Using numerical simulations and experimental measurements, the study compares the external and internal flow characteristics of conventional mixed-flow pumps with those equipped with circumferential spoke structures of varying depths. The research findings demonstrate the significant effectiveness of circumferential spoke structures in enhancing the stall performance of mixed-flow pumps. Notably, when a 5 mm-depth circumferential spoke structure is employed, it leads to a 1.27 % improvement in efficiency and a 2.18 % increase in head at 1.0Qdes. Furthermore, at 0.54Qdes and 0.62Qdes, there are efficiency enhancements of 3.96 % and 0.59 %, along with head improvements of 3.62 % and 0.67 %, respectively. Additionally, the 5 mm-depth circumferential spoke structure helps mitigate rim leakage flow and stall vortex development within the mixed-flow pump impeller. This research outcome provides valuable theoretical insights for the optimization and efficient, stable operation of large-scale hydraulic machinery.

Suggested Citation

  • Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000318
    DOI: 10.1016/j.energy.2024.130260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojun Li & Shouqi Yuan & Zhongyong Pan & Yi Li & Wei Liu, 2013. "Dynamic Characteristics of Rotating Stall in Mixed Flow Pump," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-12, October.
    2. Zhumei Luo & Cong Nie & Shunli Lv & Tao Guo & Suoming Gao, 2022. "The Effect of J-Groove on Vortex Suppression and Energy Dissipation in a Draft Tube of Francis Turbine," Energies, MDPI, vol. 15(5), pages 1-20, February.
    3. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    4. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    5. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    6. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    7. Li, Wei & Huang, Yuxin & Ji, Leilei & Ma, Lingling & Agarwal, Ramesh K. & Awais, Muhammad, 2023. "Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump," Energy, Elsevier, vol. 271(C).
    8. Li, Wei & Ji, Leilei & Li, Enda & Shi, Weidong & Agarwal, Ramesh & Zhou, Ling, 2021. "Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition," Renewable Energy, Elsevier, vol. 167(C), pages 740-760.
    9. Xiaoxiong Wu & Bo Liu & Botao Zhang & Xiaochen Mao, 2021. "Effect of Circumferential Single Casing Groove Location on the Flow Stability under Tip-Clearance Effect in a Transonic Axial Flow Compressor Rotor," Energies, MDPI, vol. 14(19), pages 1-20, September.
    10. Lu, Jie & Qian, Zhongdong & Lee, Young-Ho, 2021. "Numerical investigation of unsteady characteristics of a pump turbine under runaway condition," Renewable Energy, Elsevier, vol. 169(C), pages 905-924.
    11. Mu, Tong & Zhang, Rui & Xu, Hui & Fei, Zhaodan & Feng, Jiangang & Jin, Yan & Zheng, Yuan, 2023. "Improvement of energy performance of the axial-flow pump by groove flow control technology based on the entropy theory," Energy, Elsevier, vol. 274(C).
    12. Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "A comprehensive three-dimensional study on Darrieus vertical axis wind turbine with slotted blade to reduce flow separation," Energy, Elsevier, vol. 248(C).
    13. Li, Wei & Li, Enda & Ji, Leilei & Zhou, Ling & Shi, Weidong & Zhu, Yong, 2020. "Mechanism and propagation characteristics of rotating stall in a mixed-flow pump," Renewable Energy, Elsevier, vol. 153(C), pages 74-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    2. Li, Wei & Huang, Yuxin & Ji, Leilei & Ma, Lingling & Agarwal, Ramesh K. & Awais, Muhammad, 2023. "Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump," Energy, Elsevier, vol. 271(C).
    3. Li, Wei & Ji, Leilei & Li, Enda & Shi, Weidong & Agarwal, Ramesh & Zhou, Ling, 2021. "Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition," Renewable Energy, Elsevier, vol. 167(C), pages 740-760.
    4. Mu, Tong & Zhang, Rui & Xu, Hui & Fei, Zhaodan & Feng, Jiangang & Jin, Yan & Zheng, Yuan, 2023. "Improvement of energy performance of the axial-flow pump by groove flow control technology based on the entropy theory," Energy, Elsevier, vol. 274(C).
    5. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    6. Ye, Weixiang & Geng, Chen & Luo, Xianwu, 2022. "Unstable flow characteristics in vaneless region with emphasis on the rotor-stator interaction for a pump turbine at pump mode using large runner blade lean," Renewable Energy, Elsevier, vol. 185(C), pages 1343-1361.
    7. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    8. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    9. Xinfeng Ge & Jing Zhang & Jian Zhang & Demin Liu & Yuan Zheng & Huixiang Chen, 2022. "Review of Research on the Three-Dimensional Transition Process of Large-Scale Low-Lift Pump," Energies, MDPI, vol. 15(22), pages 1-34, November.
    10. Wang, Like & Feng, Jianjun & Lu, Jinling & Zhu, Guojun & Wang, Wei, 2024. "Novel bionic wave-shaped tip clearance toward improving hydrofoil energy performance and suppressing tip leakage vortex," Energy, Elsevier, vol. 290(C).
    11. He, Jiawei & Si, Qiaorui & Sun, Wentao & Liu, Jinfeng & Miao, Senchun & Wang, Xiaohui & Wang, Peng & Wang, Chenguang, 2023. "Study on the energy loss characteristics of ultra-low specific speed PAT under different short blade lengths based on entropy production method," Energy, Elsevier, vol. 283(C).
    12. Lin, Yanpi & Li, Xiaojun & Zhu, Zuchao & Wang, Xunming & Lin, Tong & Cao, Haibin, 2022. "An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge," Energy, Elsevier, vol. 246(C).
    13. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    14. Zhang, Bowen & Cheng, Li & Jiao, Weixuan & Zhang, Di, 2023. "Experimental and statistical analysis of the flap gate energy loss and pressure fluctuation spatiotemporal characteristics of a mixed-flow pump device," Energy, Elsevier, vol. 272(C).
    15. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    16. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    17. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    18. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    19. Wu, Chengshuo & Pu, Kexin & Li, Changqin & Wu, Peng & Huang, Bin & Wu, Dazhuan, 2022. "Blade redesign based on secondary flow suppression to improve energy efficiency of a centrifugal pump," Energy, Elsevier, vol. 246(C).
    20. Inhestern, Lukas Benjamin & Peitsch, Dieter & Paniagua, Guillermo, 2024. "Flow irreversibility and heat transfer effects on turbine efficiency," Applied Energy, Elsevier, vol. 353(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.