IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225010412.html
   My bibliography  Save this article

A potential solution to recover energy from wastewater environment by using the single-channel pump as turbine

Author

Listed:
  • Nguyen, Duc-Anh
  • Dinh, Cong-Truong
  • Kim, Gyeong Sung
  • Kim, Jin-Hyuk

Abstract

Hydroelectric turbines can become clogged by trash in the water source, which can damage the blades and reduce the performance. Thus, a turbine that can operate efficiently in trash-filled water environments is needed. In this study, a single-channel pump for operating in turbine mode is proposed as a potential solution to recover energy from a water source containing trash. To evaluate the operational capability in turbine mode, the hydraulic characteristics, radial force, and vibration were analyzed in detail by the computational fluid dynamics. Experiments were performed to confirm that SPAT could operate in trash-filled water environments and to validate the reliability of the numerical results. SPAT had a lower hydraulic efficiency in turbine mode than in pump mode, which can be attributed to the appearance of a vortex rope rotating around not only itself but also the rotating axis of the runner. The vortex rope caused large energy losses but also facilitated the movement of trash through the turbine. The net radial force was lower in turbine mode than in pump mode, but the greater eccentricity of the radial force in turbine mode resulted in stronger vibrations.

Suggested Citation

  • Nguyen, Duc-Anh & Dinh, Cong-Truong & Kim, Gyeong Sung & Kim, Jin-Hyuk, 2025. "A potential solution to recover energy from wastewater environment by using the single-channel pump as turbine," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010412
    DOI: 10.1016/j.energy.2025.135399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Zhipeng & Li, Deyou & Li, Zhipeng & Wang, Hongjie & Liu, Jintao & Qu, Zhen & Li, Yong, 2024. "Spatial-temporal evolution mechanism of mass transfer under synergetic gaseous and vapour cavitating effects in a micropump," Energy, Elsevier, vol. 286(C).
    2. Jafarzadeh Juposhti, Hessan & Maddahian, Reza & Cervantes, Michel J., 2021. "Optimization of axial water injection to mitigate the Rotating Vortex Rope in a Francis turbine," Renewable Energy, Elsevier, vol. 175(C), pages 214-231.
    3. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    4. Nguyen, Duc-Anh & Kim, Jin-Hyuk, 2024. "Co-adjustable guide vane and diffuser vane to improve the energy generation potential of an axial-flow pump as turbine," Energy, Elsevier, vol. 291(C).
    5. Shamsuddeen, Mohamed Murshid & Park, Jungwan & Choi, Young-Seok & Kim, Jin-Hyuk, 2020. "Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner," Renewable Energy, Elsevier, vol. 162(C), pages 861-876.
    6. Yan, Xiaotong & Kan, Kan & Zheng, Yuan & Xu, Zhe & Rossi, Mosè & Xu, Lianchen & Chen, Huixiang, 2024. "The vortex dynamics characteristics in a pump-turbine: A rigid vorticity analysis while varying guide vane openings in turbine mode," Energy, Elsevier, vol. 289(C).
    7. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    8. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    9. Terese E. Venus & Nicole Smialek & Joachim Pander & Atle Harby & Juergen Geist, 2020. "Evaluating Cost Trade-Offs between Hydropower and Fish Passage Mitigation," Sustainability, MDPI, vol. 12(20), pages 1-30, October.
    10. Wang, Xiu & Yang, Jia-Fu & Huang, Xiao-Wen & Wang, Wen-Quan, 2024. "Using bionic tubercles to control swirling flow instabilities of a hydraulic turbine during the load rejection process," Energy, Elsevier, vol. 311(C).
    11. Kumar, Sandeep & Cervantes, Michel J. & Gandhi, Bhupendra K., 2021. "Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    12. Liu, Xin & Luo, Yongyao & Wang, Zhengwei, 2016. "A review on fatigue damage mechanism in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1-14.
    13. Nishi, Yasuyuki & Itoh, Natsumi & Fukutomi, Junichiro, 2022. "Performance and radial thrust of single-blade reverse running pump turbine," Renewable Energy, Elsevier, vol. 201(P1), pages 499-513.
    14. Joy, Jesline & Raisee, Mehrdad & Cervantes, Michel J., 2023. "Experimental investigation of an adjustable guide vane system in a Francis turbine draft tube at part load operation," Renewable Energy, Elsevier, vol. 210(C), pages 737-750.
    15. Lin, Tong & Zhang, Jiajing & Wei, Bisheng & Zhu, Zuchao & Li, Xiaojun, 2024. "The role of bionic tubercle leading-edge in a centrifugal pump as turbines(PATs)," Renewable Energy, Elsevier, vol. 222(C).
    16. Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
    17. Shahzer, Mohammad Abu & Kim, Jin-Hyuk, 2024. "Investigation of role of fins in a Francis turbine model's cavitation-induced instabilities under design and off-design conditions," Energy, Elsevier, vol. 292(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiu & Yang, Jia-Fu & Huang, Xiao-Wen & Wang, Wen-Quan, 2024. "Using bionic tubercles to control swirling flow instabilities of a hydraulic turbine during the load rejection process," Energy, Elsevier, vol. 311(C).
    2. Shiraghaee, Shahab & Sundström, Joel & Raisee, Mehrdad & Cervantes, Michel J., 2024. "Extending the operating range of axial turbines with the protrusion of radially adjustable flat plates: An experimental investigation," Renewable Energy, Elsevier, vol. 225(C).
    3. Roh, Min-Su & Shahzer, Mohammad Abu & Kim, Jin-Hyuk, 2025. "Numerical formulation of relationship between optimized runner blade angle and specific speed in a francis turbine," Renewable Energy, Elsevier, vol. 238(C).
    4. Yang, Fan & Li, Zhongbin & Yuan, Yao & Lin, Zhikang & Zhou, Guangxin & Ji, Qingwei, 2022. "Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine," Renewable Energy, Elsevier, vol. 196(C), pages 856-869.
    5. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    6. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    7. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil," Renewable Energy, Elsevier, vol. 139(C), pages 214-227.
    8. Sergey Shtork & Daniil Suslov & Sergey Skripkin & Ivan Litvinov & Evgeny Gorelikov, 2023. "An Overview of Active Control Techniques for Vortex Rope Mitigation in Hydraulic Turbines," Energies, MDPI, vol. 16(13), pages 1-31, July.
    9. Amini, Ali & Rey-Mermet, Samuel & Crettenand, Steve & Münch-Alligné, Cécile, 2025. "A hybrid methodology for assessing hydropower plants under flexible operations: Leveraging experimental data and machine learning techniques," Applied Energy, Elsevier, vol. 383(C).
    10. Muhirwa, Alexis & Li, Biao & Su, Wen-Tao & Liu, Quan-Zhong & Binama, Maxime & Wu, Jian & Cai, Wei-Hua, 2020. "Investigation on mutual traveling influences between the draft tube and upstream components of a Francis turbine unit," Renewable Energy, Elsevier, vol. 162(C), pages 973-992.
    11. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    12. Zhang, Jiahua & Wang, Haoyuan & Yan, Qingdong & Khoo, Boo Cheong & Liu, Cheng & Guo, Meng & Wei, Wei, 2024. "Effect of blade length on unsteady cavitation characteristics of hydrodynamic torque converter," Energy, Elsevier, vol. 307(C).
    13. Xiuli Mao & Jiaren Hu & Zhongyong Pan & Pengju Zhong & Ning Zhang, 2025. "A Brief Review of Recent Research on Reversible Francis Pump Turbines in Pumped Storage Plants," Energies, MDPI, vol. 18(2), pages 1-19, January.
    14. Zhu, Di & Xiao, Ruofu & Liu, Weichao, 2021. "Influence of leading-edge cavitation on impeller blade axial force in the pump mode of reversible pump-turbine," Renewable Energy, Elsevier, vol. 163(C), pages 939-949.
    15. Lei Wang & Jiayi Cui & Lingfeng Shu & Denghui Jiang & Chun Xiang & Linwei Li & Peijian Zhou, 2022. "Research on the Vortex Rope Control Techniques in Draft Tube of Francis Turbines," Energies, MDPI, vol. 15(24), pages 1-27, December.
    16. Yexiang Xiao & Bao Guo & Soo-Hwang Ahn & Yongyao Luo & Zhengwei Wang & Guangtai Shi & Yanhao Li, 2019. "Slurry Flow and Erosion Prediction in a Centrifugal Pump after Long-Term Operation," Energies, MDPI, vol. 12(8), pages 1-17, April.
    17. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    18. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    19. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    20. Huang, Zhenwei & Huang, Zhenyou & Fan, Honggang, 2020. "Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance," Renewable Energy, Elsevier, vol. 159(C), pages 726-735.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.