IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225010886.html
   My bibliography  Save this article

A novel multi-period proactive flexible load management strategy for low-cost off-grid green methanol production

Author

Listed:
  • Bai, Mingqi
  • Liu, Shuqi
  • Qi, Meng
  • Kim, Minseong
  • Liu, Shangzhi
  • Moon, Il
  • Feng, Wei
  • Liu, Yi

Abstract

The shift toward renewable energy presents a vital opportunity for the chemical industry to reduce its dependency on fossil fuels. However, no comprehensive strategies have been proposed for optimizing flexible load management in off-grid green methanol production systems. This study presented a novel multi-period proactive flexible load management strategy. By analyzing the variability of renewable energy, different flexible load intervals are defined, and load flexibility in green methanol production is achieved through active control of the hydrogen feed rate. The results indicated that hydrogen energy storage offers superior economic advantages compared to battery storage. The multi-period load management shifts the hydrogen storage system's operation pattern from long-term storage to multi-cycle short-term fluctuations. Compared to non-flexible systems, this method achieved a 90 % reduction in hydrogen storage needs and an 80 % decrease in methanol production costs. Additionally, when a sufficient number of flexible intervals are set, the changes in renewable energy costs become negligible, allowing for the interval distribution to be made without relying on precise renewable energy resource calculations. These findings demonstrate that proactive load management can greatly enhance the economic viability of off-grid green methanol production, contributing to a more sustainable chemical industry.

Suggested Citation

  • Bai, Mingqi & Liu, Shuqi & Qi, Meng & Kim, Minseong & Liu, Shangzhi & Moon, Il & Feng, Wei & Liu, Yi, 2025. "A novel multi-period proactive flexible load management strategy for low-cost off-grid green methanol production," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010886
    DOI: 10.1016/j.energy.2025.135446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
    3. Alexandrou, Stathis & Khatiwada, Dilip, 2025. "Strategies for decarbonizing the aviation sector: Evaluating economic competitiveness of green hydrogen value chains - A case study in France," Energy, Elsevier, vol. 314(C).
    4. Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2024. "Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context," Energy, Elsevier, vol. 290(C).
    5. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Yu, Zhibin & Chen, Jianyong & Chen, Ying, 2024. "Multi-objective optimization of proton exchange membrane fuel cell based methanol-solar-to-X hybrid energy systems," Applied Energy, Elsevier, vol. 373(C).
    6. Qi, Meng & Vo, Dat Nguyen & Yu, Haoshui & Shu, Chi-Min & Cui, Chengtian & Liu, Yi & Park, Jinwoo & Moon, Il, 2023. "Strategies for flexible operation of power-to-X processes coupled with renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    7. Dong, Zeyuan & Zhang, Zhao & Huang, Minghui & Yang, Shaorong & Zhu, Jun & Zhang, Meng & Chen, Dongjiu, 2024. "Research on day-ahead optimal dispatching of virtual power plants considering the coordinated operation of diverse flexible loads and new energy," Energy, Elsevier, vol. 297(C).
    8. Pastore, Lorenzo Mario & de Santoli, Livio, 2025. "100% renewable energy Italy: A vision to achieve full energy system decarbonisation by 2050," Energy, Elsevier, vol. 317(C).
    9. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    10. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2024. "Wind energy integrated green hydrogen system as sustainable solution to decarbonize Iranian Industrial Cities," Energy, Elsevier, vol. 306(C).
    11. Bai, Mingqi & Liu, Shuqi & Qi, Meng & Liu, Shangzhi & Shu, Chi-Min & Feng, Wei & Liu, Yi, 2024. "Optimization of wind-solar hybrid system based on energy stability of multiple time scales and uncertainty of renewable resources," Energy, Elsevier, vol. 313(C).
    12. Rodríguez-Pastor, D.A. & Carvajal, E. & Becerra, J.A. & Soltero, V.M. & Chacartegui, R., 2024. "Methanol-based thermochemical energy storage (TCES) for district heating networks," Energy, Elsevier, vol. 298(C).
    13. Li, Chengjiang & Jia, Tingwen & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael & Hu, Yu-jie & Zhao, Gang & Wang, Liang, 2023. "Assessing the prospect of deploying green methanol vehicles in China from energy, environmental and economic perspectives," Energy, Elsevier, vol. 263(PE).
    14. Heide, Dominik & Greiner, Martin & von Bremen, Lüder & Hoffmann, Clemens, 2011. "Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation," Renewable Energy, Elsevier, vol. 36(9), pages 2515-2523.
    15. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    16. Graça Gomes, João & Sammarchi, Sergio & Yang, Qiang & Yang, Tianqi & Chong, Cheng Tung & Sousa, Ana Margarida & Lim, Jeng Shiun & Li, Jia, 2025. "Maximising sustainability: Planning and optimisation strategies for achieving 100 % renewable energy communities in remote islands - A case study of Corvo Island, Portugal," Energy, Elsevier, vol. 319(C).
    17. Garcia G., Matias & Oliva H., Sebastian, 2023. "Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile," Energy, Elsevier, vol. 278(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vo, Dat-Nguyen & Qi, Meng & Lee, Chang-Ha & Yin, Xunyuan, 2025. "Advanced integration strategies and machine learning-based superstructure optimization for Power-to-Methanol," Applied Energy, Elsevier, vol. 378(PA).
    2. Bai, Mingqi & Liu, Shuqi & Qi, Meng & Liu, Shangzhi & Shu, Chi-Min & Feng, Wei & Liu, Yi, 2024. "Optimization of wind-solar hybrid system based on energy stability of multiple time scales and uncertainty of renewable resources," Energy, Elsevier, vol. 313(C).
    3. Sun, Shaodong & Li, Zhi & Yuan, Benfeng & Sima, Yapeng & Dai, Yue & Wang, Wanting & He, Zhilong & Li, Chengxin, 2024. "A new pathway to integrate novel coal-to-methanol system with solid oxide fuel cell and electrolysis cell," Energy, Elsevier, vol. 304(C).
    4. Bi, Sheng & Li, Chengjiang & Zhang, Wei & Xu, Guoteng & Wang, Honglei & Hu, Yu-Jie & Chen, Che & Wang, Sheng, 2024. "The prospect of methanol-fuel heating in northern China," Renewable Energy, Elsevier, vol. 237(PB).
    5. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    6. Pastore, Lorenzo Mario & de Santoli, Livio, 2025. "100% renewable energy Italy: A vision to achieve full energy system decarbonisation by 2050," Energy, Elsevier, vol. 317(C).
    7. Xiangli Zuo & Huawei Jiang & Tianyu Gao & Man Zhang & Hairui Yang & Tuo Zhou, 2025. "Generation Characteristics of Gas Products in Fluidized Bed Gasification of Wood Pellets Under Oxygen-Enriched Conditions and Their Effects on Methanol Synthesis," Energies, MDPI, vol. 18(5), pages 1-22, March.
    8. Sampath Kumar Venkatachary & Jagdish Prasad & Ravi Samikannu & Annamalai Alagappan & Leo John Baptist & Raymon Antony Raj, 2020. "Macro Economics of Virtual Power Plant for Rural Areas of Botswana," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 196-207.
    9. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    10. Wang, Qian & Du, Caiyi & Zhang, Xueguang, 2024. "Direct air capture capacity configuration and cost allocation based on sharing mechanism," Applied Energy, Elsevier, vol. 374(C).
    11. Yue, Tingyi & Wang, Honglei & Li, Chengjiang & Hu, Yu-jie, 2024. "Optimization strategies for green power and certificate trading in China considering seasonality: An evolutionary game-based system dynamics," Energy, Elsevier, vol. 311(C).
    12. Aina Maimó-Far & Alexis Tantet & Víctor Homar & Philippe Drobinski, 2020. "Predictable and Unpredictable Climate Variability Impacts on Optimal Renewable Energy Mixes: The Example of Spain," Energies, MDPI, vol. 13(19), pages 1-25, October.
    13. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    14. Livia Pitorac & Kaspar Vereide & Leif Lia, 2020. "Technical Review of Existing Norwegian Pumped Storage Plants," Energies, MDPI, vol. 13(18), pages 1-20, September.
    15. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    16. Liang Liang & Qian Mei & Chengjiang Li, 2024. "Does “Dual Credit Policy” Really Matter in Corporate Competitiveness?," Sustainability, MDPI, vol. 16(16), pages 1-16, August.
    17. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    18. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    19. Wang, Yuting & Zhou, Yuegui, 2025. "Equipment capacity matching methodology and techno-economic analysis for a novel low-carbon multi-energy system with the integration of oxy-coal combustion power plant and power-to-gas," Energy, Elsevier, vol. 322(C).
    20. Ronan Bolton & Timothy J Foxon & Stephen Hall, 2016. "Energy transitions and uncertainty: Creating low carbon investment opportunities in the UK electricity sector," Environment and Planning C, , vol. 34(8), pages 1387-1403, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.