IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202205.html

Forecasting the Realized Variance of Oil-Price Returns Using Machine-Learning: Is there a Role for U.S. State-Level Uncertainty?

Author

Listed:
  • Oguzhan Cepni

    (Copenhagen Business School, Department of Economics, Porcelaenshaven 16A, Frederiksberg DK-2000, Denmark; Central Bank of the Republic of Turkey, Haci Bayram Mah. Istiklal Cad. No:10 06050, Ankara, Turkey)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Daniel Pienaar

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Christian Pierdzioch

    (Department of Economics, Helmut Schmidt University, Holstenhofweg 85, P.O.B. 700822, 22008 Hamburg, Germany)

Abstract

Predicting the variance of oil-price returns is of paramount importance for policymakers and investors. Recent research has focused on whether disaggregate measures of economicpolicy uncertainty provide better forecasts. Given that the United States (U.S.) is a major player in the international oil market, we extend this line of research by exploring by means of machine-learning techniques whether accounting for U.S. state-level measures of economic-policy uncertainty results in more accurate forecasts. We find improvements in forecast accuracy, especially when we study intermediate and long forecast horizons. This finding is robust to various changes in the model configuration (realized variance vs. realized volatility, sample period, recursive vs. rolling-estimation window, loss function of forecast consumers). Understandably, our findings have important implications for oil traders and policy authorities.

Suggested Citation

  • Oguzhan Cepni & Rangan Gupta & Daniel Pienaar & Christian Pierdzioch, 2022. "Forecasting the Realized Variance of Oil-Price Returns Using Machine-Learning: Is there a Role for U.S. State-Level Uncertainty?," Working Papers 202205, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202205
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Michel Sahut & Petr Hajek & Vladimir Olej & Lubica Hikkerova, 2025. "The role of news-based sentiment in forecasting crude oil price during the Covid-19 pandemic," Annals of Operations Research, Springer, vol. 345(2), pages 861-884, February.
    2. Mohammad Abdullah & Mohammad Ashraful Ferdous Chowdhury & Ajim Uddin & Syed Moudud‐Ul‐Huq, 2023. "Forecasting nonperforming loans using machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1664-1689, November.
    3. Gupta, Rangan & Nielsen, Joshua & Pierdzioch, Christian, 2024. "Stock market bubbles and the realized volatility of oil price returns," Energy Economics, Elsevier, vol. 132(C).
    4. Xu, Zhiwei & Gan, Shiqi & Hua, Xia & Xiong, Yujie, 2024. "Can the sentiment of the official media predict the return volatility of the Chinese crude oil futures?," Energy Economics, Elsevier, vol. 140(C).
    5. Shang, Dawei & Pang, Yudan & Wang, Haijie, 2025. "Carbon price fluctuation prediction using a novel hybrid statistics and machine learning approach," Energy, Elsevier, vol. 324(C).
    6. Gunnarsson, Elias Søvik & Isern, Håkon Ramon & Kaloudis, Aristidis & Risstad, Morten & Vigdel, Benjamin & Westgaard, Sjur, 2024. "Prediction of realized volatility and implied volatility indices using AI and machine learning: A review," International Review of Financial Analysis, Elsevier, vol. 93(C).
    7. Amar Rao & Marco Tedeschi & Kamel Si Mohammed & Umer Shahzad, 2024. "Role of Economic Policy Uncertainty in Energy Commodities Prices Forecasting: Evidence from a Hybrid Deep Learning Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3295-3315, December.
    8. Rangan Gupta & Christian Pierdzioch, 2023. "Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
    9. Cheng, Zishu & Li, Mingchen & Sun, Yuying & Hong, Yongmiao & Wang, Shouyang, 2024. "Climate change and crude oil prices: An interval forecast model with interval-valued textual data," Energy Economics, Elsevier, vol. 134(C).
    10. Polat, Onur & Somani, Dhanashree & Gupta, Rangan & Karmakar, Sayar, 2025. "Shortages and machine-learning forecasting of oil returns volatility: 1900–2024," Finance Research Letters, Elsevier, vol. 79(C).
    11. Grudniewicz, Jan & Ślepaczuk, Robert, 2023. "Application of machine learning in algorithmic investment strategies on global stock markets," Research in International Business and Finance, Elsevier, vol. 66(C).
    12. Haas, Christian & Budin, Constantin & d’Arcy, Anne, 2024. "How to select oil price prediction models — The effect of statistical and financial performance metrics and sentiment scores," Energy Economics, Elsevier, vol. 133(C).
    13. Işık, Cem & Kuziboev, Bekhzod & Ongan, Serdar & Saidmamatov, Olimjon & Mirkhoshimova, Mokhirakhon & Rajabov, Alibek, 2024. "The volatility of global energy uncertainty: Renewable alternatives," Energy, Elsevier, vol. 297(C).
    14. Dutta, Anupam & Uddin, Gazi Salah & Sheng, Lin Wen & Park, Donghyun & Zhu, Xuening, 2024. "Volatility dynamics of agricultural futures markets under uncertainties," Energy Economics, Elsevier, vol. 136(C).
    15. Yin, Libo & Yang, Sen, 2023. "Oil price returns and firm's fixed investment: A production pattern," Energy Economics, Elsevier, vol. 125(C).
    16. Duras, Toni & Javed, Farrukh & Månsson, Kristofer & Sjölander, Pär & Söderberg, Magnus, 2023. "Using machine learning to select variables in data envelopment analysis: Simulations and application using electricity distribution data," Energy Economics, Elsevier, vol. 120(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.