IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v59y2013icp44-58.html
   My bibliography  Save this article

Renewable heating: Perspectives and the impact of policy instruments

Author

Listed:
  • Kranzl, Lukas
  • Hummel, Marcus
  • Müller, Andreas
  • Steinbach, Jan

Abstract

In the light of the EU directive for renewable energy (2009/28/EC) this paper deals with the question how various policy instruments could impact the development of renewable heating technologies. The paper applies the simulation model Invert/EE-Lab for the building related heat demand in selected European countries (Austria, Lithuania and United Kingdom). The resulting scenarios up to 2030 are compared to RES-Heat targets from literature, stakeholder consultation processes and the targets in the national renewable energy action plans submitted by EU Member States in 2010. The results demonstrate that use obligations for renewable heating can be effective in achieving RES-Heat market growth. However, in order to attain a balanced technology mix and more ambitious targets, policy packages are required combining use obligations with economic incentives and accompanying measures. Technology specific conclusions are derived. Moreover, conclusions indicate that the action plans are not always consistent with policy measures in place or under discussion.

Suggested Citation

  • Kranzl, Lukas & Hummel, Marcus & Müller, Andreas & Steinbach, Jan, 2013. "Renewable heating: Perspectives and the impact of policy instruments," Energy Policy, Elsevier, vol. 59(C), pages 44-58.
  • Handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:44-58
    DOI: 10.1016/j.enpol.2013.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513002280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Beerepoot, Milou & Beerepoot, Niels, 2007. "Government regulation as an impetus for innovation: Evidence from energy performance regulation in the Dutch residential building sector," Energy Policy, Elsevier, vol. 35(10), pages 4812-4825, October.
    2. Stadler, Michael & Kranzl, Lukas & Huber, Claus & Haas, Reinhard & Tsioliaridou, Elena, 2007. "Policy strategies and paths to promote sustainable energy systems--The dynamic Invert simulation tool," Energy Policy, Elsevier, vol. 35(1), pages 597-608, January.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, May.
    4. Bruhns, Harry & Steadman, Philip & Herring, Horace, 2000. "A database for modeling energy use in the non-domestic building stock of England and Wales," Applied Energy, Elsevier, vol. 66(4), pages 277-297, August.
    5. Bürger, Veit & Klinski, Stefan & Lehr, Ulrike & Leprich, Uwe & Nast, Michael & Ragwitz, Mario, 2008. "Policies to support renewable energies in the heat market," Energy Policy, Elsevier, vol. 36(8), pages 3140-3149, August.
    6. Nassen, Jonas & Holmberg, John, 2005. "Energy efficiency--a forgotten goal in the Swedish building sector?," Energy Policy, Elsevier, vol. 33(8), pages 1037-1051, May.
    7. Schimschar, Sven & Blok, Kornelis & Boermans, Thomas & Hermelink, Andreas, 2011. "Germany's path towards nearly zero-energy buildings--Enabling the greenhouse gas mitigation potential in the building stock," Energy Policy, Elsevier, vol. 39(6), pages 3346-3360, June.
    8. Noailly, Joëlle & Batrakova, Svetlana, 2010. "Stimulating energy-efficient innovations in the Dutch building sector: Empirical evidence from patent counts and policy lessons," Energy Policy, Elsevier, vol. 38(12), pages 7803-7817, December.
    9. Boonekamp, Piet G.M., 2006. "Actual interaction effects between policy measures for energy efficiency—A qualitative matrix method and quantitative simulation results for households," Energy, Elsevier, vol. 31(14), pages 2848-2873.
    10. Kranzl, Lukas & Stadler, Michael & Huber, Claus & Haas, Reinhard & Ragwitz, Mario & Brakhage, Anselm & Gula, Adam & Figorski, Arkadiusz, 2006. "Deriving efficient policy portfolios promoting sustainable energy systems—Case studies applying Invert simulation tool," Renewable Energy, Elsevier, vol. 31(15), pages 2393-2410.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    2. Caroline Löffler & Harald Hecking, 2017. "Greenhouse Gas Abatement Cost Curves of the Residential Heating Market: A Microeconomic Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 915-947, December.
    3. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    4. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    5. Mezősi, András & Beöthy, Ákos & Kácsor, Enikő & Törőcsik, Ágnes, 2016. "A magyarországi távhő-szabályozás modellezése. A megújuló energiára alapozott hőtermelés [Modelling policy options in the district heating sector, with a focus on renewable consumption]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1149-1176.
    6. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    7. Bauermann, Klaas, 2016. "German Energiewende and the heating market – Impact and limits of policy," Energy Policy, Elsevier, vol. 94(C), pages 235-246.
    8. András Mezősi & Enikő Kácsor & à kos Beöthy & à gnes Törőcsik & László Szabó, 2017. "Modelling support policies and renewable energy sources deployment in the Hungarian district heating sector," Energy & Environment, , vol. 28(1-2), pages 70-87, March.
    9. Groesser, Stefan N., 2014. "Co-evolution of legal and voluntary standards: Development of energy efficiency in Swiss residential building codes," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 1-16.
    10. Faber, Albert & Hoppe, Thomas, 2013. "Co-constructing a sustainable built environment in the Netherlands—Dynamics and opportunities in an environmental sectoral innovation system," Energy Policy, Elsevier, vol. 52(C), pages 628-638.
    11. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    12. Berry, Stephen & Davidson, Kathryn, 2016. "Improving the economics of building energy code change: A review of the inputs and assumptions of economic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 157-166.
    13. Stéphane Poncin, 2018. "Energy policy tools in Luxembourg - Assessing their impact on households’ space heating energy consumption and CO2 emissions by means of the LuxHEI model," DEM Discussion Paper Series 18-23, Department of Economics at the University of Luxembourg.
    14. Bischof, Julian & Duffy, Aidan, 2022. "Life-cycle assessment of non-domestic building stocks: A meta-analysis of current modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Murphy, Lorraine & Meijer, Frits & Visscher, Henk, 2012. "A qualitative evaluation of policy instruments used to improve energy performance of existing private dwellings in the Netherlands," Energy Policy, Elsevier, vol. 45(C), pages 459-468.
    16. Zhifeng Gao & Ted C. Schroeder, 2009. "Consumer responses to new food quality information: are some consumers more sensitive than others?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 339-346, May.
    17. Cheng, Leilei & Yin, Changbin & Chien, Hsiaoping, 2015. "Demand for milk quantity and safety in urban China: evidence from Beijing and Harbin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    18. Johannes Buggle & Thierry Mayer & Seyhun Orcan Sakalli & Mathias Thoenig, 2023. "The Refugee’s Dilemma: Evidence from Jewish Migration out of Nazi Germany," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 1273-1345.
    19. Christelis, Dimitris & Dobrescu, Loretti I. & Motta, Alberto, 2020. "Early life conditions and financial risk-taking in older age," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    20. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:44-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.