IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v48y2012icp668-676.html
   My bibliography  Save this article

An investigation of the role of China's urban population on coal consumption

Author

Listed:
  • Michieka, Nyakundi M.
  • Fletcher, Jerald J.

Abstract

This paper investigates the causal relationship between urban population, real GDP, electricity production and coal consumption in China for the period 1971–2009. Using a vector autoregression framework and a modified version of the Granger (1969) causality test proposed by Toda and Yamamoto (J. Econ. 66 (1995) 225), the results suggest that there is causality running from GDP to coal consumption. The variance decomposition analysis report that urban population and coal affect electricity production variability over the forecast period. We also find that increasing urban population may negatively affect China's GDP over time. Policy measures aimed at influencing GDP could ultimately affect coal consumption.

Suggested Citation

  • Michieka, Nyakundi M. & Fletcher, Jerald J., 2012. "An investigation of the role of China's urban population on coal consumption," Energy Policy, Elsevier, vol. 48(C), pages 668-676.
  • Handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:668-676
    DOI: 10.1016/j.enpol.2012.05.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512005022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.05.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    2. Kaufmann, R. K. & Kauppi, H. & Mann, M. L. & Stock, James H., 2011. "Reconciling anthropogenic climate change with observed temperature 1998–2008," Scholarly Articles 29071926, Harvard University Department of Economics.
    3. Beauchemin, Cris & Schoumaker, Bruno, 2005. "Migration to cities in Burkina Faso: Does the level of development in sending areas matter?," World Development, Elsevier, vol. 33(7), pages 1129-1152, July.
    4. Zhang, Kevin Honglin & Song, Shunfeng, 2003. "Rural-urban migration and urbanization in China: Evidence from time-series and cross-section analyses," China Economic Review, Elsevier, vol. 14(4), pages 386-400.
    5. Jones, Donald W., 1991. "How urbanization affects energy-use in developing countries," Energy Policy, Elsevier, vol. 19(7), pages 621-630, September.
    6. Liu, Ai-ying & Yao, Li-fen & Li, Qing-chen, 2011. "Cointegration Analysis on the Relation between Urbanization and Economic Growth in China," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 3(03), pages 1-4, March.
    7. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    8. Masih, Rumi & Masih, Abul M. M., 1996. "Stock-Watson dynamic OLS (DOLS) and error-correction modelling approaches to estimating long- and short-run elasticities in a demand function: new evidence and methodological implications from an appl," Energy Economics, Elsevier, vol. 18(4), pages 315-334, October.
    9. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    10. Jordan Shan & Fiona Sun, 1998. "Export-led growth hypothesis for Australia: an empirical re-investigation," Applied Economics Letters, Taylor & Francis Journals, vol. 5(7), pages 423-428.
    11. Zapata, Hector O & Rambaldi, Alicia N, 1997. "Monte Carlo Evidence on Cointegration and Causation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(2), pages 285-298, May.
    12. Wolde-Rufael, Yemane, 2010. "Coal consumption and economic growth revisited," Applied Energy, Elsevier, vol. 87(1), pages 160-167, January.
    13. Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
    14. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    15. He, Y.X. & Zhang, S.L. & Yang, L.Y. & Wang, Y.J. & Wang, J., 2010. "Economic analysis of coal price-electricity price adjustment in China based on the CGE model," Energy Policy, Elsevier, vol. 38(11), pages 6629-6637, November.
    16. Sinton, Jonathan E., 2001. "Accuracy and reliability of China's energy statistics," China Economic Review, Elsevier, vol. 12(4), pages 373-383.
    17. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    18. Zhou, Zhongren & Wu, Wenliang & Wang, Xiaohua & Chen, Qun & Wang, Ou, 2009. "Analysis of changes in the structure of rural household energy consumption in northern China: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 187-193, January.
    19. Chuanlong Tang & Sumner J. La Croix, 1993. "Energy Consumption and Economic Activity in China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-36.
    20. Adams, F. Gerard & Shachmurove, Yochanan, 2008. "Modeling and forecasting energy consumption in China: Implications for Chinese energy demand and imports in 2020," Energy Economics, Elsevier, vol. 30(3), pages 1263-1278, May.
    21. Warwick J. McKibbin & Peter J. Wilcoxen, 2002. "The Role of Economics in Climate Change Policy," Journal of Economic Perspectives, American Economic Association, vol. 16(2), pages 107-129, Spring.
    22. Xiangzheng Deng & Jikun Huang & Scott Rozelle & Emi Uchida, 2010. "Economic Growth and the Expansion of Urban Land in China," Urban Studies, Urban Studies Journal Limited, vol. 47(4), pages 813-843, April.
    23. Jinke, Li & Hualing, Song & Dianming, Geng, 2008. "Causality relationship between coal consumption and GDP: Difference of major OECD and non-OECD countries," Applied Energy, Elsevier, vol. 85(6), pages 421-429, June.
    24. Lin Chan, Hing & Kam Lee, Shu, 1997. "Modelling and forecasting the demand for coal in China," Energy Economics, Elsevier, vol. 19(3), pages 271-287, July.
    25. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liddle, Brantley & Lung, Sidney, 2013. "Might electricity consumption cause urbanization instead? Evidence from heterogeneous panel long-run causality tests," MPRA Paper 52333, University Library of Munich, Germany.
    2. Shahbaz, Muhammad & Loganathan, Nanthakumar & Sbia, Rashid & Afza, Talat, 2015. "The effect of urbanization, affluence and trade openness on energy consumption: A time series analysis in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 683-693.
    3. Brantley Liddle & George Messinis, 2015. "Which comes first - urbanization or economic growth? Evidence from heterogeneous panel causality tests," Applied Economics Letters, Taylor & Francis Journals, vol. 22(5), pages 349-355, March.
    4. Yanbin Li & Zhen Li, 2019. "Forecasting of Coal Demand in China Based on Support Vector Machine Optimized by the Improved Gravitational Search Algorithm," Energies, MDPI, vol. 12(12), pages 1-20, June.
    5. Dariusz Fuksa, 2021. "A Method for Assessing the Impact of Changes in Demand for Coal on the Structure of Coal Grades Produced by Mines," Energies, MDPI, vol. 14(21), pages 1-34, November.
    6. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
    7. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    8. Chai, Jian & Du, Mengfan & Liang, Ting & Sun, Xiaojie Christine & Yu, Ji & Zhang, Zhe George, 2019. "Coal consumption in China: How to bend down the curve?," Energy Economics, Elsevier, vol. 80(C), pages 38-47.
    9. Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2015. "A comparative study on prediction methods for China's medium- and long-term coal demand," Energy, Elsevier, vol. 93(P2), pages 1671-1683.
    10. Shahbaz, Muhammad & Chaudhary, A.R. & Ozturk, Ilhan, 2017. "Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model," Energy, Elsevier, vol. 122(C), pages 83-93.
    11. Razek, Noha H.A. & Michieka, Nyakundi M., 2019. "OPEC and non-OPEC production, global demand, and the financialization of oil," Research in International Business and Finance, Elsevier, vol. 50(C), pages 201-225.
    12. Wu, Ya & Zhang, Wanying, 2016. "The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis," Energy Policy, Elsevier, vol. 95(C), pages 126-134.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michieka, Nyakundi M. & Fletcher, Jerald & Burnett, Wesley, 2013. "An empirical analysis of the role of China’s exports on CO2 emissions," Applied Energy, Elsevier, vol. 104(C), pages 258-267.
    2. Soytas, Ugur & Sari, Ramazan, 2006. "Can China contribute more to the fight against global warming?," Journal of Policy Modeling, Elsevier, vol. 28(8), pages 837-846, November.
    3. Bashiri Behmiri, Niaz & Pires Manso, José R., 2012. "Does Portuguese economy support crude oil conservation hypothesis?," Energy Policy, Elsevier, vol. 45(C), pages 628-634.
    4. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    5. Nepal, Rabindra & Paija, Nirash, 2019. "A multivariate time series analysis of energy consumption, real output and pollutant emissions in a developing economy: New evidence from Nepal," Economic Modelling, Elsevier, vol. 77(C), pages 164-173.
    6. Alam, Mohammad Jahangir & Begum, Ismat Ara & Buysse, Jeroen & Rahman, Sanzidur & Van Huylenbroeck, Guido, 2011. "Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3243-3251, August.
    7. Zhihui Lv & Amanda M. Y. Chu & Michael McAleer & Wing-Keung Wong, 2019. "Modelling Economic Growth, Carbon Emissions, and Fossil Fuel Consumption in China: Cointegration and Multivariate Causality," IJERPH, MDPI, vol. 16(21), pages 1-35, October.
    8. Stephan B. Bruns & David I. Stern, 2019. "Lag length selection and p-hacking in Granger causality testing: prevalence and performance of meta-regression models," Empirical Economics, Springer, vol. 56(3), pages 797-830, March.
    9. Apergis, Nicholas & Tang, Chor Foon, 2013. "Is the energy-led growth hypothesis valid? New evidence from a sample of 85 countries," Energy Economics, Elsevier, vol. 38(C), pages 24-31.
    10. Cattaneo, Cristina & Manera, Matteo & Scarpa, Elisa, 2011. "Industrial coal demand in China: A provincial analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 12-35, January.
    11. Stephan B. Bruns, Christian Gross and David I. Stern, 2014. "Is There Really Granger Causality Between Energy Use and Output?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Muhammad SHAHBAZ & Smile DUBE, 2012. "Revisiting the Relationship between Coal Consumption and Economic Growth: Cointegration and Causality Analysis in Pakistan," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 12(1).
    13. Hongzhong Fan & Md Ismail Hossain, 2018. "Technological Innovation, Trade Openness, CO2 Emission and Economic Growth: Comparative Analysis between China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 240-257.
    14. Tang, Chor Foon & Lai, Yew Wah, 2011. "The Stability of Export-led Growth Hypothesis: Evidence from Asia's Four Little Dragons," MPRA Paper 27962, University Library of Munich, Germany.
    15. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    16. Jin Zhang and David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    17. Ugur Soytas, 2006. "Long run relationship between entry and exit: time series evidence from Turkish manufacturing industry," Economics Bulletin, AccessEcon, vol. 12(11), pages 1-12.
    18. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, I," Energy, Elsevier, vol. 36(1), pages 685-693.
    19. Yildirim, Ertugrul & Aslan, Alper & Ozturk, Ilhan, 2012. "Coal consumption and industrial production nexus in USA: Cointegration with two unknown structural breaks and causality approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6123-6127.
    20. Qingjing Zhang & Taufiq Choudhry & Jing-Ming Kuo & Xiaoquan Liu, 2021. "Does liquidity drive stock market returns? The role of investor risk aversion," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 929-958, October.

    More about this item

    Keywords

    China; Coal; Population;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:668-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.