IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i3p1659-1668.html
   My bibliography  Save this article

Conceptualizing urban household energy use: Climbing the "Energy Services Ladder"

Author

Listed:
  • Sovacool, Benjamin K.

Abstract

This article begins by defining energy services and identifying how they differ according to sector, urban and rural areas, and direct and indirect uses. It then investigates household energy services divided into three classes: lower income, middle income, and upper income. It finds that the primary energy technologies involved with low-income households involve a greater number of fuels and carriers, ranging from dung and fuelwood to liquefied petroleum gas and charcoal, but a fewer number of services. Middle-income households throughout the world tend to rely on electricity and natural gas, followed by coal, liquefied petroleum gas, and kerosene. These homes utilize energy to produce a much broader range services. The upper class or rich have access to the same energy fuels, carriers, and technologies as middle-income homes and families, but consume more energy (and more high luxury items). The study highlights how focusing on energy services reorients the direction of energy policy interventions, that energy services are neither uniform nor innate, and by noting exciting areas of potential research.

Suggested Citation

  • Sovacool, Benjamin K., 2011. "Conceptualizing urban household energy use: Climbing the "Energy Services Ladder"," Energy Policy, Elsevier, vol. 39(3), pages 1659-1668, March.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1659-1668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00941-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt, Lester C. & Judge, Guy & Ninomiya, Yasushi, 2003. "Underlying trends and seasonality in UK energy demand: a sectoral analysis," Energy Economics, Elsevier, vol. 25(1), pages 93-118, January.
    2. Jacobson, Arne & Milman, Anita D. & Kammen, Daniel M., 2005. "Letting the (energy) Gini out of the bottle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity," Energy Policy, Elsevier, vol. 33(14), pages 1825-1832, September.
    3. Spreng, Daniel, 1993. "Possibilities for substitution between energy, time and information," Energy Policy, Elsevier, vol. 21(1), pages 13-23, January.
    4. Haas, Reinhard & Nakicenovic, Nebojsa & Ajanovic, Amela & Faber, Thomas & Kranzl, Lukas & Müller, Andreas & Resch, Gustav, 2008. "Towards sustainability of energy systems: A primer on how to apply the concept of energy services to identify necessary trends and policies," Energy Policy, Elsevier, vol. 36(11), pages 4012-4021, November.
    5. Habtetsion, Semereab & Tsighe, Zemenfes, 2002. "The energy sector in Eritrea--institutional and policy options for improving rural energy services," Energy Policy, Elsevier, vol. 30(11-12), pages 1107-1118, September.
    6. Loveday, Dennis L. & Bhamra, T. & Tang, T. & Haines, V.J.A. & Holmes, M.J. & Green, R.J., 2008. "The energy and monetary implications of the '24/7' 'always on' society," Energy Policy, Elsevier, vol. 36(12), pages 4639-4645, December.
    7. Karekezi, Stephen & Majoro, Lugard, 2002. "Improving modern energy services for Africa's urban poor," Energy Policy, Elsevier, vol. 30(11-12), pages 1015-1028, September.
    8. Elizabeth Shove, 2004. "Efficiency and Consumption: Technology and Practice," Energy & Environment, , vol. 15(6), pages 1053-1065, November.
    9. Druckman, A. & Jackson, T., 2008. "Measuring resource inequalities: The concepts and methodology for an area-based Gini coefficient," Ecological Economics, Elsevier, vol. 65(2), pages 242-252, April.
    10. Pachauri, Shonali & Jiang, Leiwen, 2008. "The household energy transition in India and China," Energy Policy, Elsevier, vol. 36(11), pages 4022-4035, November.
    11. Van Hoa, Tran, 1985. "The quality of consumption : Some Australian evidence," Economics Letters, Elsevier, vol. 19(2), pages 189-192.
    12. Dianshu, Feng & Sovacool, Benjamin K. & Minh Vu, Khuong, 2010. "The barriers to energy efficiency in China: Assessing household electricity savings and consumer behavior in Liaoning Province," Energy Policy, Elsevier, vol. 38(2), pages 1202-1209, February.
    13. Rapanos, Vassilis T. & Polemis, Michael L., 2006. "The structure of residential energy demand in Greece," Energy Policy, Elsevier, vol. 34(17), pages 3137-3143, November.
    14. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    15. Pachauri, S. & Mueller, A. & Kemmler, A. & Spreng, D., 2004. "On Measuring Energy Poverty in Indian Households," World Development, Elsevier, vol. 32(12), pages 2083-2104, December.
    16. Wilhite, Harold & Nakagami, Hidetoshi & Masuda, Takashi & Yamaga, Yukiko & Haneda, Hiroshi, 1996. "A cross-cultural analysis of household energy use behaviour in Japan and Norway," Energy Policy, Elsevier, vol. 24(9), pages 795-803, September.
    17. Howells, M. I. & Alfstad, T. & Victor, D. G. & Goldstein, G. & Remme, U., 2005. "A model of household energy services in a low-income rural African village," Energy Policy, Elsevier, vol. 33(14), pages 1833-1851, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cravioto, Jordi & Yamasue, Eiji & Okumura, Hideyuki & Ishihara, Keiichi N., 2014. "Energy service satisfaction in two Mexican communities: A study on demographic, household, equipment and energy related predictors," Energy Policy, Elsevier, vol. 73(C), pages 110-126.
    2. Goldthau, Andreas & Sovacool, Benjamin K., 2012. "The uniqueness of the energy security, justice, and governance problem," Energy Policy, Elsevier, vol. 41(C), pages 232-240.
    3. Gosens, Jorrit & Lu, Yonglong & He, Guizhen & Bluemling, Bettina & Beckers, Theo A.M., 2013. "Sustainability effects of household-scale biogas in rural China," Energy Policy, Elsevier, vol. 54(C), pages 273-287.
    4. Satoru Komatsu & Hieu Dinh Ha & Shinji Kaneko, 2012. "Effects of Internal Migration on Residential Energy Consumption and CO2 Emissions in Hanoi," IDEC DP2 Series 2-17, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    5. repec:gam:jscscx:v:6:y:2017:i:4:p:144-:d:120248 is not listed on IDEAS
    6. Stefan Bouzarovski & Saska Petrova & Sergio Tirado-Herrero, 2014. "From Fuel Poverty to Energy Vulnerability: The Importance of Services, Needs and Practices," SPRU Working Paper Series 2014-25, SPRU - Science and Technology Policy Research, University of Sussex.
    7. Roger Fouquet & Peter J.G. Pearson, 2012. "The Long Run Demand for Lighting:Elasticities and Rebound Effects in Different Phases of Economic Development," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    8. repec:eee:ecolec:v:141:y:2017:i:c:p:43-52 is not listed on IDEAS
    9. Fouquet, Roger, 2014. "Long run demand for energy services: income and price elasticities over two hundred years," LSE Research Online Documents on Economics 59070, London School of Economics and Political Science, LSE Library.
    10. Kileber, Solange & Parente, Virginia, 2015. "Diversifying the Brazilian electricity mix: Income level, the endowment effect, and governance capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1180-1189.
    11. Roger Fouquet, 2013. "Long Run Demand for Energy Services: the Role of Economic and Technological Development," Working Papers 2013-03, BC3.
    12. Gouveia, João Pedro & Fortes, Patrícia & Seixas, Júlia, 2012. "Projections of energy services demand for residential buildings: Insights from a bottom-up methodology," Energy, Elsevier, vol. 47(1), pages 430-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1659-1668. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.