IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v34y2006i17p3245-3256.html
   My bibliography  Save this article

US long-term energy intensity: Backcast and projection

Author

Listed:
  • Dowlatabadi, Hadi
  • Oravetz, Matthew A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Dowlatabadi, Hadi & Oravetz, Matthew A., 2006. "US long-term energy intensity: Backcast and projection," Energy Policy, Elsevier, vol. 34(17), pages 3245-3256, November.
  • Handle: RePEc:eee:enepol:v:34:y:2006:i:17:p:3245-3256
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(05)00156-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    2. Kydes, Andy S. & Shaw, Susan H. & McDonald, Douglas F., 1995. "Beyond the horizon: Recent directions in long-term energy modeling," Energy, Elsevier, vol. 20(2), pages 131-149.
    3. Stephen C. Peck & Thomas J. Teisberg, 1999. "CO2 Emissions Control Agreements: Incentives for Regional Participation," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 367-390.
    4. Schafer, Andreas, 2005. "Structural change in energy use," Energy Policy, Elsevier, vol. 33(4), pages 429-437, March.
    5. James M. Griffin & Craig T. Schulman, 2005. "Price Asymmetry in Energy Demand Models: A Proxy for Energy-Saving Technical Change?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
    6. Tschang, F. Ted & Dowlatabadi, Hadi, 1995. "A Bayesian technique for refining the uncertainty in global energy model forecasts," International Journal of Forecasting, Elsevier, vol. 11(1), pages 43-61, March.
    7. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    8. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    9. Peck, Stephen C & Teisberg, Thomas J, 1995. "International CO2 emissions control : An analysis using CETA," Energy Policy, Elsevier, vol. 23(4-5), pages 297-308.
    10. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    11. Mark K. Jaccard & John Nyboer & Crhis Bataille & Bryn Sadownik, 2003. "Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Definitions and Long-Run Cost Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-73.
    12. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    13. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    14. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, December.
    15. Alan S. Manne & Richard G. Richels, 1999. "The Kyoto Protocol: A Cost-Effective Strategy for Meeting Environmental Objectives?," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-23.
    16. William W. Hogan & Dale W. Jorgenson, 1991. "Productivity Trends and the Cost of Reducing CO2 Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 67-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
    2. Bo Li & Jicong Yang & Wei Sun, 2022. "Can Expanding Cultural Consumption Improve Urban Air Quality? An Analysis Based on China’s Cultural Consumption Pilot Policy," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    3. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    4. Shahiduzzaman, Md & Layton, Allan, 2017. "Decomposition analysis for assessing the United States 2025 emissions target: How big is the challenge?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 372-383.
    5. Keller, Klaus & Miltich, Louise I. & Robinson, Alexander & Tol, Richard S.J., 2007. "How Overconfident are Current Projections of Anthropogenic Carbon Dioxide Emissions?," Climate Change Modelling and Policy Working Papers 9321, Fondazione Eni Enrico Mattei (FEEM).
    6. Kialashaki, Arash & Reisel, John R., 2014. "Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States," Energy, Elsevier, vol. 76(C), pages 749-760.
    7. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    8. Ahlroth, Sofia & Hojer, Mattias, 2007. "Sustainable energy prices and growth: Comparing macroeconomic and backcasting scenarios," Ecological Economics, Elsevier, vol. 63(4), pages 722-731, September.
    9. Jean-Francois Mercure, 2012. "On the changeover timescales of technology transitions and induced efficiency changes: an overarching theory," Papers 1209.0424, arXiv.org.
    10. Sue Wing, Ian, 2008. "Explaining the declining energy intensity of the U.S. economy," Resource and Energy Economics, Elsevier, vol. 30(1), pages 21-49, January.
    11. Sue Wing, Ian & Eckaus, Richard S., 2007. "The implications of the historical decline in US energy intensity for long-run CO2 emission projections," Energy Policy, Elsevier, vol. 35(11), pages 5267-5286, November.
    12. Zha, Jianping & Tan, Ting & Fan, Rong & Xu, Han & Ma, Siqi, 2020. "How to reduce energy intensity to achieve sustainable development of China's transport sector? A cross-regional comparison analysis," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    13. Livas-García, A. & Bonilla, D. & Escalante Soberanis, M.A. & Bassam, A., 2019. "Projecting the energy pathway using a methodological sequence: The case of Mexico," Energy Policy, Elsevier, vol. 135(C).
    14. Kemp-Benedict, Eric, 2014. "The inverted pyramid: A neo-Ricardian view on the economy–environment relationship," Ecological Economics, Elsevier, vol. 107(C), pages 230-241.
    15. Okushima, Shinichiro & Tamura, Makoto, 2011. "Identifying the sources of energy use change: Multiple calibration decomposition analysis and structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 22(4), pages 313-326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    2. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    3. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    4. CARRARO Carlo & MASSETTI Emanuele & NICITA Lea, 2010. "How Does Climate Policy Affect Technical Change? ?An Analysis of the Direction and Pace of Technical Progress in a Climate-Economy Model (Fondazione Eni Enrico Mattei)," ESRI Discussion paper series 229, Economic and Social Research Institute (ESRI).
    5. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    6. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    7. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    8. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    9. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    10. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    11. Karanfil, Fatih & Yeddir-Tamsamani, Yasser, 2010. "Is technological change biased toward energy? A multi-sectoral analysis for the French economy," Energy Policy, Elsevier, vol. 38(4), pages 1842-1850, April.
    12. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    13. Halvor Briseid Storrøsten, 2014. "Prices vs. Quantities with Endogenous Cost Structure," CESifo Working Paper Series 4625, CESifo.
    14. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    15. Wilkerson, Jordan T. & Leibowicz, Benjamin D. & Turner, Delavane D. & Weyant, John P., 2015. "Comparison of integrated assessment models: Carbon price impacts on U.S. energy," Energy Policy, Elsevier, vol. 76(C), pages 18-31.
    16. Costantini, Valeria & Martini, Chiara, 2010. "The causality between energy consumption and economic growth: A multi-sectoral analysis using non-stationary cointegrated panel data," Energy Economics, Elsevier, vol. 32(3), pages 591-603, May.
    17. Durand-Lasserve, Olivier & Pierru, Axel & Smeers, Yves, 2010. "Uncertain long-run emissions targets, CO2 price and global energy transition: A general equilibrium approach," Energy Policy, Elsevier, vol. 38(9), pages 5108-5122, September.
    18. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    19. Jin, Wei & Zhang, ZhongXiang, "undated". "Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress," Working Papers 249504, Australian National University, Centre for Climate Economics & Policy.
    20. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:34:y:2006:i:17:p:3245-3256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.