IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v165y2022ics0301421522001872.html
   My bibliography  Save this article

Key factors influencing onshore wind energy development: A case study from the German North Sea region

Author

Listed:
  • Kiunke, Theresa
  • Gemignani, Natalia
  • Malheiro, Pedro
  • Brudermann, Thomas

Abstract

The aim of this paper is to identify facilitating and hindering factors for onshore wind energy development near natural conservation regions, in particular in Lower Saxony's Wattenmeer region. An applied research approach was deployed to connect individual aspects of wind energy technology and establish a cross-disciplinary perspective on the expansion of wind energy. To this end, relevant facilitating and hindering factors were identified and then validated by a group of academic experts. The main factors were grouped within the framework of Strengths, Weaknesses, Opportunities and Threats. In a subsequent step, a sample of experts in the wind power sector evaluated the relative importance of the key factors, using an Analytic Hierarchy Process. The results show that factors positively influencing wind energy expansion exceed the hindering factors. Wind electricity is likely to benefit from opportunities such as climate change and from industry-specific strengths, for instance the competitiveness of wind in the German electricity market. Barriers and uncertainties that influence the further development of the sector relate to strict ecological protection laws and limited spatial opportunities for new projects. Finally, basic policy strategies were formulated which aim at fostering strengths and opportunities of wind energy development and at reducing weaknesses and threats.

Suggested Citation

  • Kiunke, Theresa & Gemignani, Natalia & Malheiro, Pedro & Brudermann, Thomas, 2022. "Key factors influencing onshore wind energy development: A case study from the German North Sea region," Energy Policy, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:enepol:v:165:y:2022:i:c:s0301421522001872
    DOI: 10.1016/j.enpol.2022.112962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522001872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.112962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. von Lüpke, Heiner & Well, Mareike, 2020. "Analyzing climate and energy policy integration: the case of the Mexican energy transition," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(7), pages 832-845.
    2. Siddique, Muhammad Bilal & Thakur, Jagruti, 2020. "Assessment of curtailed wind energy potential for off-grid applications through mobile battery storage," Energy, Elsevier, vol. 201(C).
    3. Masurowski, Frank & Drechsler, Martin & Frank, Karin, 2016. "A spatially explicit assessment of the wind energy potential in response to an increased distance between wind turbines and settlements in Germany," Energy Policy, Elsevier, vol. 97(C), pages 343-350.
    4. Broekel, Tom & Alfken, Christoph, 2015. "Gone with the wind? The impact of wind turbines on tourism demand," Energy Policy, Elsevier, vol. 86(C), pages 506-519.
    5. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    6. D׳Souza, Clare & Yiridoe, Emmanuel K., 2014. "Social acceptance of wind energy development and planning in rural communities of Australia: A consumer analysis," Energy Policy, Elsevier, vol. 74(C), pages 262-270.
    7. Krekel, Christian & Zerrahn, Alexander, 2017. "Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 221-238.
    8. Mah, Daphne Ngar-yin & Wu, Yun-Ying & Ip, Jasper Chi-man & Hills, Peter Ronald, 2013. "The role of the state in sustainable energy transitions: A case study of large smart grid demonstration projects in Japan," Energy Policy, Elsevier, vol. 63(C), pages 726-737.
    9. Zaman, Rafia & Brudermann, Thomas, 2018. "Energy governance in the context of energy service security: A qualitative assessment of the electricity system in Bangladesh," Applied Energy, Elsevier, vol. 223(C), pages 443-456.
    10. Heiner von Lüpke & Mareike Well, 2020. "Analyzing climate and energy policy integration: the case of the Mexican energy transition," Climate Policy, Taylor & Francis Journals, vol. 20(7), pages 832-845, July.
    11. Mu-Xing Lin & Hwa Meei Liou & Kuei Tien Chou, 2020. "National Energy Transition Framework toward SDG7 with Legal Reforms and Policy Bundles: The Case of Taiwan and Its Comparison with Japan," Energies, MDPI, vol. 13(6), pages 1-20, March.
    12. Smith Stegen, Karen & Seel, Matthias, 2013. "The winds of change: How wind firms assess Germany's energy transition," Energy Policy, Elsevier, vol. 61(C), pages 1481-1489.
    13. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    14. Cherp, Aleh & Vinichenko, Vadim & Jewell, Jessica & Suzuki, Masahiro & Antal, Miklós, 2017. "Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan," Energy Policy, Elsevier, vol. 101(C), pages 612-628.
    15. Gürtler, Konrad & Postpischil, Rafael & Quitzow, Rainer, 2019. "The dismantling of renewable energy policies: The cases of Spain and the Czech Republic," Energy Policy, Elsevier, vol. 133(C).
    16. Croonenbroeck, Carsten & Hennecke, David, 2020. "Does the German renewable energy act provide a fair incentive system for onshore wind power? — A simulation analysis," Energy Policy, Elsevier, vol. 144(C).
    17. Jenniches, Simon & Worrell, Ernst & Fumagalli, Elena, 2019. "Regional economic and environmental impacts of wind power developments: A case study of a German region," Energy Policy, Elsevier, vol. 132(C), pages 499-514.
    18. Brudermann, Thomas & Reinsberger, Kathrin & Orthofer, Anita & Kislinger, Martin & Posch, Alfred, 2013. "Photovoltaics in agriculture: A case study on decision making of farmers," Energy Policy, Elsevier, vol. 61(C), pages 96-103.
    19. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    20. Arnberger, Arne & Eder, Renate & Allex, Brigitte & Preisel, Hemma & Ebenberger, Martin & Husslein, Maria, 2018. "Trade-offs between wind energy, recreational, and bark-beetle impacts on visual preferences of national park visitors," Land Use Policy, Elsevier, vol. 76(C), pages 166-177.
    21. Reusswig, Fritz & Braun, Florian & Heger, Ines & Ludewig, Thomas & Eichenauer, Eva & Lass, Wiebke, 2016. "Against the wind: Local opposition to the German Energiewende," Utilities Policy, Elsevier, vol. 41(C), pages 214-227.
    22. Destek, Mehmet Akif & Aslan, Alper, 2020. "Disaggregated renewable energy consumption and environmental pollution nexus in G-7 countries," Renewable Energy, Elsevier, vol. 151(C), pages 1298-1306.
    23. Nordensvärd, Johan & Urban, Frauke, 2015. "The stuttering energy transition in Germany: Wind energy policy and feed-in tariff lock-in," Energy Policy, Elsevier, vol. 82(C), pages 156-165.
    24. Grashof, Katherina & Berkhout, Volker & Cernusko, Robert & Pfennig, Maximilian, 2020. "Long on promises, short on delivery? Insights from the first two years of onshore wind auctions in Germany," Energy Policy, Elsevier, vol. 140(C).
    25. de Menezes, Lilian M. & Houllier, Melanie A., 2015. "Germany's nuclear power plant closures and the integration of electricity markets in Europe," Energy Policy, Elsevier, vol. 85(C), pages 357-368.
    26. Maria A. Petrova, 2013. "NIMBYism revisited: public acceptance of wind energy in the United States," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 4(6), pages 575-601, November.
    27. Brudermann, Thomas & Mitterhuber, Corinna & Posch, Alfred, 2015. "Agricultural biogas plants – A systematic analysis of strengths, weaknesses, opportunities and threats," Energy Policy, Elsevier, vol. 76(C), pages 107-111.
    28. Chang, Victor & Chen, Yian & (Justin) Zhang, Zuopeng & Xu, Qianwen Ariel & Baudier, Patricia & Liu, Ben S.C., 2021. "The market challenge of wind turbine industry-renewable energy in PR China and Germany," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    29. Stokes, Leah C. & Breetz, Hanna L., 2018. "Politics in the U.S. energy transition: Case studies of solar, wind, biofuels and electric vehicles policy," Energy Policy, Elsevier, vol. 113(C), pages 76-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poier, Stefan, 2023. "A matter of risk? Investigating the battery purchase decision in the German photovoltaics market," Energy, Elsevier, vol. 275(C).
    2. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    3. Rusu, Eugen, 2022. "Assessment of the wind power dynamics in the North Sea under climate change conditions," Renewable Energy, Elsevier, vol. 195(C), pages 466-475.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    2. Reinsberger, Kathrin & Brudermann, Thomas & Hatzl, Stefanie & Fleiß, Eva & Posch, Alfred, 2015. "Photovoltaic diffusion from the bottom-up: Analytical investigation of critical factors," Applied Energy, Elsevier, vol. 159(C), pages 178-187.
    3. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    4. Manuel Gardt & Tom Broekel & Philipp Gareis, 2021. "Blowing against the winds of change? The relationship between anti-wind initiatives and wind turbines in Germany," Papers in Evolutionary Economic Geography (PEEG) 2119, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    5. Gardt Manuel & Broekel Tom & Gareis Philipp & Litmeyer Marie-Louise, 2018. "Einfluss von Windenergieanlagen auf die Entwicklung des Tourismus in Hessen," ZFW – Advances in Economic Geography, De Gruyter, vol. 62(1), pages 46-64, March.
    6. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    7. Radtke, Jörg & Scherhaufer, Patrick, 2022. "A social science perspective on conflicts in the energy transition: An introduction to the special issue," Utilities Policy, Elsevier, vol. 78(C).
    8. Mitsch, Frieder & McNeil, Andrew, 2022. "Political implications of ‘green’ infrastructure in one’s ‘backyard’: the Green Party’s Catch 22?," LSE Research Online Documents on Economics 115269, London School of Economics and Political Science, LSE Library.
    9. Carol Hager & Nicole Hamagami, 2020. "Local Renewable Energy Initiatives in Germany and Japan in a Changing National Policy Environment," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 386-411, May.
    10. Israel Solorio & Jorge Guzmán & Ixchel Guzmán, 2023. "Participatory decision-making in the policy integration process: indigenous consultation and sustainable development in Mexico," Policy Sciences, Springer;Society of Policy Sciences, vol. 56(1), pages 115-140, March.
    11. Huang, Shi-Zheng, 2022. "The effect of natural resources and economic factors on energy transition: New evidence from China," Resources Policy, Elsevier, vol. 76(C).
    12. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    13. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    14. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    15. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Scope elasticity and economic significance in discrete choice experiments," Discussion Papers 942, Statistics Norway, Research Department.
    16. Rohe, Sebastian & Chlebna, Camilla, 2021. "A spatial perspective on the legitimacy of a technological innovation system: Regional differences in onshore wind energy," Energy Policy, Elsevier, vol. 151(C).
    17. Qingyou Yan & Meijuan Zhang & Wei Li & Guangyu Qin, 2020. "Risk Assessment of New Energy Vehicle Supply Chain Based on Variable Weight Theory and Cloud Model: A Case Study in China," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    18. Karakislak, Irmak & Schneider, Nina, 2023. "The mayor said so? The impact of local political figures and social norms on local responses to wind energy projects," Energy Policy, Elsevier, vol. 176(C).
    19. Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022. "Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    20. Mengyao Liu & Hongli Jiang, 2022. "Can the Energy-Consumption Permit Trading Scheme Curb SO 2 Emissions? Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 14(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:165:y:2022:i:c:s0301421522001872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.