IDEAS home Printed from https://ideas.repec.org/a/wly/mgtdec/v45y2024i1p539-553.html
   My bibliography  Save this article

A prospect theory extension of data envelopment analysis model for wave‐wind energy site selection in New Zealand

Author

Listed:
  • Chia‐Nan Wang
  • Hoang‐Kha Nguyen
  • Nhat‐Luong Nhieu
  • Hsien‐Pin Hsu

Abstract

Renewable energy sources have been utilized by countries worldwide, but offshore energy exploitation projects remain highly promising for both the world and New Zealand specifically. The selection of equipment installation locations can be challenging and requires significant investment, prompting the need for optimization in offshore energy exploitation. Wind and wave location (WWL) integrated sites offer a highly potential solution for reducing installation costs and enhancing efficiency in renewable energy exploitation. However, the decision‐making process for selecting equipment locations is crucial and directly affects the outcome. This study aims to evaluate and consider sustainable and effective equipment installation sites based on both quantitative indicators and behavioral psychology of decision making. To achieve this goal, the study utilizes the prospect theory Data Envelopment Analysis (PT‐DEA) model, which builds on PT to analyze and evaluate the effectiveness of offshore installation site selection with consideration for human psychology. By combining the results of quantitative indicators and decision‐making behavior, the study identifies sustainable and effective offshore installation sites, recommending appropriate equipment installation locations WWL. The study is also compared and referenced with relevant plans, projects, and development policies in New Zealand for confirmation.

Suggested Citation

  • Chia‐Nan Wang & Hoang‐Kha Nguyen & Nhat‐Luong Nhieu & Hsien‐Pin Hsu, 2024. "A prospect theory extension of data envelopment analysis model for wave‐wind energy site selection in New Zealand," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 45(1), pages 539-553, January.
  • Handle: RePEc:wly:mgtdec:v:45:y:2024:i:1:p:539-553
    DOI: 10.1002/mde.4016
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/mde.4016
    Download Restriction: no

    File URL: https://libkey.io/10.1002/mde.4016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cradden, L. & Kalogeri, C. & Barrios, I. Martinez & Galanis, G. & Ingram, D. & Kallos, G., 2016. "Multi-criteria site selection for offshore renewable energy platforms," Renewable Energy, Elsevier, vol. 87(P1), pages 791-806.
    2. Li, Jiangxia & Pan, Shunqi & Chen, Yongping & Yao, Yu & Xu, Conghao, 2022. "Assessment of combined wind and wave energy in the tropical cyclone affected region:An application in China seas," Energy, Elsevier, vol. 260(C).
    3. Pourali, Mahmoud & Kavianpour, Mohamad Reza & Kamranzad, Bahareh & Alizadeh, Mohamad Javad, 2023. "Future variability of wave energy in the Gulf of Oman using a high resolution CMIP6 climate model," Energy, Elsevier, vol. 262(PB).
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Edwards, Kimberley D., 1996. "Prospect theory: A literature review," International Review of Financial Analysis, Elsevier, vol. 5(1), pages 19-38.
    6. Kiunke, Theresa & Gemignani, Natalia & Malheiro, Pedro & Brudermann, Thomas, 2022. "Key factors influencing onshore wind energy development: A case study from the German North Sea region," Energy Policy, Elsevier, vol. 165(C).
    7. Azadeh, A. & Ghaderi, S.F. & Nasrollahi, M.R., 2011. "Location optimization of wind plants in Iran by an integrated hierarchical Data Envelopment Analysis," Renewable Energy, Elsevier, vol. 36(5), pages 1621-1631.
    8. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    9. Doljak, Dejan & Stanojević, Gorica, 2017. "Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia," Energy, Elsevier, vol. 127(C), pages 291-300.
    10. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    11. Nicholas C. Barberis, 2013. "Thirty Years of Prospect Theory in Economics: A Review and Assessment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 173-196, Winter.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    2. Khanjarpanah, Hossein & Jabbarzadeh, Armin, 2019. "Sustainable wind plant location optimization using fuzzy cross-efficiency data envelopment analysis," Energy, Elsevier, vol. 170(C), pages 1004-1018.
    3. A. Azadeh & M. S. Naghavi lhoseiny & V. Salehi, 2018. "Optimum alternatives of tandem G/G/K queues with disaster customers and retrial phenomenon: interactive voice response systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(3), pages 535-562, July.
    4. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, January.
    5. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    6. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    7. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    8. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    9. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    10. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    11. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    12. Ravelojaona, Paola, 2019. "On constant elasticity of substitution – Constant elasticity of transformation Directional Distance Functions," European Journal of Operational Research, Elsevier, vol. 272(2), pages 780-791.
    13. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    14. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    15. Keh, Hean Tat & Chu, Singfat, 2003. "Retail productivity and scale economies at the firm level: a DEA approach," Omega, Elsevier, vol. 31(2), pages 75-82, April.
    16. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    17. da Silva, Aneirson Francisco & Miranda, Rafael de Carvalho & Marins, Fernando Augusto Silva & Dias, Erica Ximenes, 2024. "A new multiple criteria data envelopment analysis with variable return to scale: Applying bi-dimensional representation and super-efficiency analysis," European Journal of Operational Research, Elsevier, vol. 314(1), pages 308-322.
    18. Mohammad Tavassoli & Mahsa Ghandehari & Masoud Taherinia, 2023. "Rang-adjusted measure: modelling and computational aspects from internal and external perspectives for network DEA," Operational Research, Springer, vol. 23(4), pages 1-34, December.
    19. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    20. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:mgtdec:v:45:y:2024:i:1:p:539-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/7976 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.