IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i4d10.1007_s13198-022-01852-6.html
   My bibliography  Save this article

Operational performance of Indian passenger airlines using hierarchical categorical DEA approach

Author

Listed:
  • Bharti Seth

    (Indira Gandhi Delhi Technical University for Women
    Vivekananda Institute of Professional Studies-TC)

  • Punita Saxena

    (University of Delhi)

  • Shalini Arora

    (Indira Gandhi Delhi Technical University for Women)

Abstract

The challenges faced by the Indian Aviation market are complex and perplexing for the decision-makers in this sector. This industry has faced debilitating losses during COVID-19 pandemic times. The travel restrictions have been gradually lifted worldwide, and therefore the airlines can expect to witness a growth in domestic and international air passenger traffic during 2021–22. The losses incurred during the pandemic times need to be recovered. Thus, there is an urgent need to strategically plan and improve the operations so that the airlines can perform efficiently and earn revenues. Airlines in India work under heterogeneous environments depending upon their segment of operations. Some of the airlines operate for only domestic passengers and others for both domestic and international passengers. Therefore these airlines must be assessed as per their homogeneous peer group to obtain substantial results. The proposed study has discussed an approach to study airlines' operational performance using hierarchical categorical data envelopment analysis (DEA). The airlines have been categorized based upon their segment of operations. The efficiency of the airlines has been evaluated for the period 2014–19 as per their categorical input value. Window analysis has also been performed for a meaningful analysis of the results. The outcomes of the study will be helpful for policymakers to improvise the present working model of the industry and alleviate their performance.

Suggested Citation

  • Bharti Seth & Punita Saxena & Shalini Arora, 2024. "Operational performance of Indian passenger airlines using hierarchical categorical DEA approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(4), pages 1415-1423, April.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:4:d:10.1007_s13198-022-01852-6
    DOI: 10.1007/s13198-022-01852-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-022-01852-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-022-01852-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min, Hokey & Joo, Seong-Jong, 2016. "A comparative performance analysis of airline strategic alliances using data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 99-110.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Saranga, Haritha & Nagpal, Rajiv, 2016. "Drivers of operational efficiency and its impact on market performance in the Indian Airline industry," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 165-176.
    4. Andreas Soteriou & Stavros A. Zenios, 1999. "Operations, Quality, and Profitability in the Provision of Banking Services," Management Science, INFORMS, vol. 45(9), pages 1221-1238, September.
    5. John J. Rousseau & John H. Semple, 1993. "Notes: Categorical Outputs in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(3), pages 384-386, March.
    6. Haas, David A. & Murphy, Frederic H., 2003. "Compensating for non-homogeneity in decision-making units in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 144(3), pages 530-544, February.
    7. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    8. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    9. Rajiv D. Banker & Richard C. Morey, 1986. "The Use of Categorical Variables in Data Envelopment Analysis," Management Science, INFORMS, vol. 32(12), pages 1613-1627, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    2. Youchao Tan & Udaya Shetty & Ali Diabat & T. Pakkala, 2015. "Aggregate directional distance formulation of DEA with integer variables," Annals of Operations Research, Springer, vol. 235(1), pages 741-756, December.
    3. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    4. Reuben Elan & Verma Bharat Bhushan & Bhat Ramesh, 2001. "Hospital Efficiency: An Empirical Analysis of District and Grant-in-Aid Hospitals in Gujarat," IIMA Working Papers WP2001-07-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    6. Kuosmanen, Timo & Matin, Reza Kazemi, 2009. "Theory of integer-valued data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 192(2), pages 658-667, January.
    7. Gonzalez-Padron, Tracy & Akdeniz, M. Billur & Calantone, Roger J., 2014. "Benchmarking sales staffing efficiency in dealerships using extended data envelopment analysis," Journal of Business Research, Elsevier, vol. 67(9), pages 1904-1911.
    8. Abolghasem, Sepideh & Gómez-Sarmiento, Juliana & Medaglia, Andrés L. & Sarmiento, Olga L. & González, Andrés D. & Díaz del Castillo, Adriana & Rozo-Casas, Juan F. & Jacoby, Enrique, 2018. "A DEA-centric decision support system for evaluating Ciclovía-Recreativa programs in the Americas," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 90-101.
    9. Jie Wu & Zhixiang Zhou, 2015. "A mixed-objective integer DEA model," Annals of Operations Research, Springer, vol. 228(1), pages 81-95, May.
    10. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    11. Harrison, Julie & Rouse, Paul, 2014. "Competition and public high school performance," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 10-19.
    12. Yen, Barbara T.H. & Li, Jun-Sheng, 2022. "Route-based performance evaluation for airlines – A metafrontier data envelopment analysis approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    13. Kaya, Gizem & Aydın, Umut & Ülengin, Burç & Karadayı, Melis Almula & Ülengin, Füsun, 2023. "How do airlines survive? An integrated efficiency analysis on the survival of airlines," Journal of Air Transport Management, Elsevier, vol. 107(C).
    14. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    15. Isabel Narbón-Perpiñá & Maria Teresa Balaguer-Coll & Marko Petrović & Emili Tortosa-Ausina, 2020. "Which estimator to measure local governments’ cost efficiency? The case of Spanish municipalities," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(1), pages 51-82, March.
    16. Thanh Ngo & Kan Wai Hong Tsui, 2022. "Estimating the confidence intervals for DEA efficiency scores of Asia-Pacific airlines," Operational Research, Springer, vol. 22(4), pages 3411-3434, September.
    17. Mehmet A. Begen & Fredrik Ødegaard & Jafar Sadeghi, 2024. "On aggregation of technical and revenue efficiency measures," Journal of Productivity Analysis, Springer, vol. 62(3), pages 335-350, December.
    18. Zhiqiang Zheng & Balaji Padmanabhan, 2007. "Constructing Ensembles from Data Envelopment Analysis," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 486-496, November.
    19. Papaioannou, Grammatoula & Podinovski, Victor V., 2023. "Production technologies with ratio inputs and outputs," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1164-1178.
    20. Walczuch, R.M. & Bielowski, A.G., 2002. "From measurement to management: the influence of IT on service operations," Research Memorandum 045, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:4:d:10.1007_s13198-022-01852-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.