IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v49y2015icp47-60.html
   My bibliography  Save this article

Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision

Author

Listed:
  • Costa, Marcelo Azevedo
  • Lopes, Ana Lúcia Miranda
  • de Pinho Matos, Giordano Bruno Braz

Abstract

In 2011, the Brazilian Electricity Regulator (ANEEL) implemented a benchmarking model to evaluate the operational efficiency of power distribution utilities. The model is based on two benchmarking methods: Data Envelopment Analysis (DEA) and Corrected Ordinary Least Squares (COLS) with a Cobb Douglas production function. Although the estimated scores are highly correlated, differences between the scores are as high as 41%. For some companies differences between the efficiency scores result in substantial reduction in regulatory operational costs. We provide a detailed statistical comparison which indicates that the COLS Cobb Douglas model has major deficiencies in terms of estimating efficiency scores.

Suggested Citation

  • Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
  • Handle: RePEc:eee:soceps:v:49:y:2015:i:c:p:47-60
    DOI: 10.1016/j.seps.2014.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012114000500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2014.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bagdadioglu, Necmiddin & Waddams Price, Catherine M. & Weyman-Jones, Thomas G., 1996. "Efficiency and ownership in electricity distribution: A non-parametric model of the Turkish experience," Energy Economics, Elsevier, vol. 18(1-2), pages 1-23, April.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. PER AGRELL & Peter Bogetoft & Jørgen Tind, 2005. "DEA and Dynamic Yardstick Competition in Scandinavian Electricity Distribution," Journal of Productivity Analysis, Springer, vol. 23(2), pages 173-201, May.
    4. Haney, Aoife Brophy & Pollitt, Michael G., 2009. "Efficiency analysis of energy networks: An international survey of regulators," Energy Policy, Elsevier, vol. 37(12), pages 5814-5830, December.
    5. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    6. Sarıca, Kemal & Or, Ilhan, 2007. "Efficiency assessment of Turkish power plants using data envelopment analysis," Energy, Elsevier, vol. 32(8), pages 1484-1499.
    7. Lins, Marcos Pereira Estellita & Sollero, Maria Karla Vervloet & Caloba, Guilherme Marques & da Silva, Angela Cristina Moreira, 2007. "Integrating the regulatory and utility firm perspectives, when measuring the efficiency of electricity distribution," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1413-1424, September.
    8. Vaninsky, Alexander, 2006. "Efficiency of electric power generation in the United States: Analysis and forecast based on data envelopment analysis," Energy Economics, Elsevier, vol. 28(3), pages 326-338, May.
    9. Douglas, Paul H, 1976. "The Cobb-Douglas Production Function Once Again: Its History, Its Testing, and Some New Empirical Values," Journal of Political Economy, University of Chicago Press, vol. 84(5), pages 903-915, October.
    10. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    11. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    12. Pacudan, Romeo & de Guzman, Elaine, 2002. "Impact of energy efficiency policy to productive efficiency of electricity distribution industry in the Philippines," Energy Economics, Elsevier, vol. 24(1), pages 41-54, January.
    13. Arocena, Pablo, 2008. "Cost and quality gains from diversification and vertical integration in the electricity industry: A DEA approach," Energy Economics, Elsevier, vol. 30(1), pages 39-58, January.
    14. Peter Bogetoft & Lars Otto, 2011. "Benchmarking with DEA, SFA, and R," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7961-2, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    3. Scalzer, Rodrigo S. & Rodrigues, Adriano & Macedo, Marcelo Álvaro da S. & Wanke, Peter, 2019. "Financial distress in electricity distributors from the perspective of Brazilian regulation," Energy Policy, Elsevier, vol. 125(C), pages 250-259.
    4. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    5. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
    6. Ilda Kadrimi Blaceri & Armela Anamali, 2019. "Fiscal Policy Challenges for Countries that Join the EU," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 5, May - Aug.
    7. Brandão, Roberto & Tolmasquim, Maurício T. & Maestrini, Marcelo & Tavares, Arthur Felipe & Castro, Nivalde J. & Ozorio, Luiz & Chaves, Ana Carolina, 2021. "Determinants of the economic performance of Brazilian electricity distributors," Utilities Policy, Elsevier, vol. 68(C).
    8. L sara Fabr cia Rodrigues & Matheus Alves Madeira de Souza & Thamara Paula dos Santos Dias, 2017. "Performance Assessment of Brazilian Power Transmission and Distribution Segments using Data Envelopment Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 14-23.
    9. Núñez, F. & Arcos-Vargas, A. & Villa, G., 2020. "Efficiency benchmarking and remuneration of Spanish electricity distribution companies," Utilities Policy, Elsevier, vol. 67(C).
    10. Costa, Marcelo Azevedo & Lopes-Ahn, Ana Lúcia & Kilger, Alexander de Carvalho & Micas, Artur Fontenelle, 2023. "Limitations of weight restrictions in data envelopment analysis for benchmarking Brazilian electricity distribution system operators," Utilities Policy, Elsevier, vol. 82(C).
    11. Arcos-Vargas, A. & Núñez-Hernández, F. & Villa-Caro, Gabriel, 2017. "A DEA analysis of electricity distribution in Spain: An industrial policy recommendation," Energy Policy, Elsevier, vol. 102(C), pages 583-592.
    12. da Silva, Aline Veronese & Costa, Marcelo Azevedo & Ahn, Heinz & Lopes, Ana Lúcia Miranda, 2019. "Performance benchmarking models for electricity transmission regulation: Caveats concerning the Brazilian case," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. S P Santos & C A F Amado & J R Rosado, 2011. "Formative evaluation of electricity distribution utilities using data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1298-1319, July.
    3. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    4. Agrell, Per J. & Brea-Solís, Humberto, 2017. "Capturing heterogeneity in electricity distribution operations: A critical review of latent class modelling," Energy Policy, Elsevier, vol. 104(C), pages 361-372.
    5. Seifert, Stefan & Cullmann, Astrid & von Hirschhausen, Christian, 2016. "Technical efficiency and CO2 reduction potentials — An analysis of the German electricity and heat generating sector," Energy Economics, Elsevier, vol. 56(C), pages 9-19.
    6. Fang, Hong & Wu, Junjie & Zeng, Catherine, 2009. "Comparative study on efficiency performance of listed coal mining companies in China and the US," Energy Policy, Elsevier, vol. 37(12), pages 5140-5148, December.
    7. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    8. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    9. Xin-gang, Zhao & Zhen, Wei, 2019. "The technical efficiency of China's wind power list enterprises: An estimation based on DEA method and micro-data," Renewable Energy, Elsevier, vol. 133(C), pages 470-479.
    10. Ederer, Nikolaus, 2015. "Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1034-1046.
    11. Stefan Seifert & Astrid Cullmann & Christian von Hirschhausen, 2014. "Technical Efficiency and CO2 Reduction Potentials: An Analysis of the German Electricity Generating Sector," Discussion Papers of DIW Berlin 1426, DIW Berlin, German Institute for Economic Research.
    12. E. Nur Ozkan Gunay, 2012. "Risk Incorporation and Efficiency in Emerging Market Banks During the Global Crisis: Evidence from Turkey, 2002-2009," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(S5), pages 91-102, November.
    13. Liu, C.H. & Lin, Sue J. & Lewis, Charles, 2010. "Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis," Energy Policy, Elsevier, vol. 38(2), pages 1049-1058, February.
    14. Vaninsky, Alexander, 2010. "Prospective national and regional environmental performance: Boundary estimations using a combined data envelopment – stochastic frontier analysis approach," Energy, Elsevier, vol. 35(9), pages 3657-3665.
    15. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    16. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    17. Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
    18. Chang, Ming-Chung, 2013. "A comment on the calculation of the total-factor energy efficiency (TFEE) index," Energy Policy, Elsevier, vol. 53(C), pages 500-504.
    19. Chen, Zhongfei & Barros, Carlos Pestana & Borges, Maria Rosa, 2015. "A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies," Energy Economics, Elsevier, vol. 48(C), pages 136-144.
    20. Andreas Eder & Bernhard Mahlberg & Bernhard Stürmer, 2021. "Measuring and explaining productivity growth of renewable energy producers: An empirical study of Austrian biogas plants," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(1), pages 37-63, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:49:y:2015:i:c:p:47-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.