IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp1004-1018.html
   My bibliography  Save this article

Sustainable wind plant location optimization using fuzzy cross-efficiency data envelopment analysis

Author

Listed:
  • Khanjarpanah, Hossein
  • Jabbarzadeh, Armin

Abstract

Due to sustainability of wind energy, demands for this source of energy have increased rapidly. Strategic decisions such as determining the suitable location for wind plants can improve the feasibility of wind energy system projects. In this paper, a novel approach entailing data envelopment analysis (DEA) cross-efficiency and fuzzy-cross-efficiency models is proposed to find most suitable locations for wind plants establishment. Sustainability criteria are used as inputs and outputs of the presented approach. The developed method considers uncertainties associated with candidate locations efficiency value. The efficiency is defined as the ratio of weighted sum of outputs to that of inputs. A simulated annealing (SA) algorithm is applied to achieve a new ranking that has the lowest distance from the mean of all the available rankings obtained by the models. To evaluate the performance of the approach, a real case study in Iran is investigated. The numerical results show that the average values of efficiency obtained from the proposed aggressive and benevolent models are equal to 0.481 and 0.665, respectively. While, the obtained values for the deterministic aggressive and benevolent models are 0.491 and 0.609, respectively. Hence, fuzzy-cross-efficiency models provide lower and upper bounds for corresponding cross-efficiency models.

Suggested Citation

  • Khanjarpanah, Hossein & Jabbarzadeh, Armin, 2019. "Sustainable wind plant location optimization using fuzzy cross-efficiency data envelopment analysis," Energy, Elsevier, vol. 170(C), pages 1004-1018.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:1004-1018
    DOI: 10.1016/j.energy.2018.12.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218324435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DeCesaro, Jennifer & Porter, Kevin & Milligan, Michael, 2009. "Wind Energy and Power System Operations: A Review of Wind Integration Studies to Date," The Electricity Journal, Elsevier, vol. 22(10), pages 34-43, December.
    2. Olanrewaju, O.A. & Jimoh, A.A. & Kholopane, P.A., 2012. "Integrated IDA–ANN–DEA for assessment and optimization of energy consumption in industrial sectors," Energy, Elsevier, vol. 46(1), pages 629-635.
    3. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Aras, Haydar & Erdoğmuş, Şenol & Koç, Eylem, 2004. "Multi-criteria selection for a wind observation station location using analytic hierarchy process," Renewable Energy, Elsevier, vol. 29(8), pages 1383-1392.
    6. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    7. Iribarren, Diego & Vázquez-Rowe, Ian & Rugani, Benedetto & Benetto, Enrico, 2014. "On the feasibility of using emergy analysis as a source of benchmarking criteria through data envelopment analysis: A case study for wind energy," Energy, Elsevier, vol. 67(C), pages 527-537.
    8. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    9. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    10. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    11. Saidur, R. & Islam, M.R. & Rahim, N.A. & Solangi, K.H., 2010. "A review on global wind energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1744-1762, September.
    12. Richard Dusansky & Clayton J. Vernon, 1998. "Rankings of U.S. Economics Departments," Journal of Economic Perspectives, American Economic Association, vol. 12(1), pages 157-170, Winter.
    13. Amy H. I. Lee & He-Yau Kang & Chun-Yu Lin & Kuan-Chin Shen, 2015. "An Integrated Decision-Making Model for the Location of a PV Solar Plant," Sustainability, MDPI, vol. 7(10), pages 1-20, September.
    14. Aydin, Nazli Yonca & Kentel, Elcin & Duzgun, Sebnem, 2010. "GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 364-373, January.
    15. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    16. Zhao, Pan & Wang, Jiangfeng & Xia, Junrong & Dai, Yiping & Sheng, Yingxin & Yue, Jie, 2012. "Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China," Renewable Energy, Elsevier, vol. 43(C), pages 234-241.
    17. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    18. Azadeh, A. & Ghaderi, S.F. & Nasrollahi, M.R., 2011. "Location optimization of wind plants in Iran by an integrated hierarchical Data Envelopment Analysis," Renewable Energy, Elsevier, vol. 36(5), pages 1621-1631.
    19. Wang, Ying-Ming & Chin, Kwai-Sang, 2010. "Some alternative models for DEA cross-efficiency evaluation," International Journal of Production Economics, Elsevier, vol. 128(1), pages 332-338, November.
    20. Grigoroudis, Evangelos & Petridis, Konstantinos & Arabatzis, Garyfallos, 2014. "RDEA: A recursive DEA based algorithm for the optimal design of biomass supply chain networks," Renewable Energy, Elsevier, vol. 71(C), pages 113-122.
    21. Azadeh, Ali & Rahimi-Golkhandan, Armin & Moghaddam, Mohsen, 2014. "Location optimization of wind power generation–transmission systems under uncertainty using hierarchical fuzzy DEA: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 877-885.
    22. Azadeh, A. & Babazadeh, R. & Asadzadeh, S.M., 2013. "Optimum estimation and forecasting of renewable energy consumption by artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 605-612.
    23. Djankov, Simeon & McLiesh, Caralee & Ramalho, Rita Maria, 2006. "Regulation and growth," Economics Letters, Elsevier, vol. 92(3), pages 395-401, September.
    24. Doyle, J & Green, R, 1993. "Data envelopment analysis and multiple criteria decision making," Omega, Elsevier, vol. 21(6), pages 713-715, November.
    25. DuPont, Bryony & Cagan, Jonathan & Moriarty, Patrick, 2016. "An advanced modeling system for optimization of wind farm layout and wind turbine sizing using a multi-level extended pattern search algorithm," Energy, Elsevier, vol. 106(C), pages 802-814.
    26. Liang, Liang & Wu, Jie & Cook, Wade D. & Zhu, Joe, 2008. "Alternative secondary goals in DEA cross-efficiency evaluation," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1025-1030, June.
    27. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    28. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    29. Baroudi, Jamal A. & Dinavahi, Venkata & Knight, Andrew M., 2007. "A review of power converter topologies for wind generators," Renewable Energy, Elsevier, vol. 32(14), pages 2369-2385.
    30. Pishvaee, M.S. & Razmi, J. & Torabi, S.A., 2014. "An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 14-38.
    31. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majid Azadi & Balal Karimi & William Ho & Reza Farzipoor Saen, 2022. "Assessing green performance of power plants by multiple hybrid returns to scale technologies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1177-1211, December.
    2. Ãœmit SaÄŸlam, 2019. "The effects of electricity prices on productive efficiency of states' wind power performances in the United States," Economics Bulletin, AccessEcon, vol. 39(2), pages 866-875.
    3. Jingqi Sun & Nuermaimaiti Ruze & Jianjun Zhang & Haoran Zhao & Boyang Shen, 2019. "Evaluating the Investment Efficiency of China’s Provincial Power Grid Enterprises under New Electricity Market Reform: Empirical Evidence Based on Three-Stage DEA Model," Energies, MDPI, vol. 12(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    3. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    4. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    5. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    6. Ederer, Nikolaus, 2015. "Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1034-1046.
    7. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    8. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    9. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    10. Feng Li & Han Wu & Qingyuan Zhu & Liang Liang & Gang Kou, 2021. "Data envelopment analysis cross efficiency evaluation with reciprocal behaviors," Annals of Operations Research, Springer, vol. 302(1), pages 173-210, July.
    11. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    12. Mehdi Toloo & Mona Barat & Atefeh Masoumzadeh, 2015. "Selective measures in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 623-642, March.
    13. Liu, Bingsheng & Sheu, Jiuh-Biing & Zhao, Xue & Chen, Yuan & Zhang, Wei, 2020. "Decision making on post-disaster rescue routing problems from the rescue efficiency perspective," European Journal of Operational Research, Elsevier, vol. 286(1), pages 321-335.
    14. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    15. Rácz, Viktor J. & Vestergaard, Niels, 2016. "Productivity and efficiency measurement of the Danish centralized biogas power sector," Renewable Energy, Elsevier, vol. 92(C), pages 397-404.
    16. Sarmento, Joaquim Miranda & Renneboog, Luc & Verga-Matos, Pedro, 2017. "Measuring highway efficiency : A DEA approach and the Malquist index," Other publications TiSEM 23264815-321e-45a3-83ee-9, Tilburg University, School of Economics and Management.
    17. Jian Chai & Wenyue Fan & Jing Han, 2019. "Does the Energy Efficiency of Power Companies Affect Their Industry Status? A DEA Analysis of Listed Companies in Thermal Power Sector," Sustainability, MDPI, vol. 12(1), pages 1-12, December.
    18. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    19. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    20. Ebrahimi, Bohlool & Dhamotharan, Lalitha & Ghasemi, Mohammad Reza & Charles, Vincent, 2022. "A cross-inefficiency approach based on the deviation variables framework," Omega, Elsevier, vol. 111(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:1004-1018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.