IDEAS home Printed from
   My bibliography  Save this article

Wind energy feasibility study for city of Shahrbabak in Iran


  • Mostafaeipour, A.
  • Sedaghat, A.
  • Dehghan-Niri, A.A.
  • Kalantar, V.


Climate change, global warming, and the recent worldwide economic crisis have emphasized the need for low carbon emissions while also ensuring economic feasibility. In this paper, the status and wind power potential of the city of Shahrbabak in Kerman province in Iran was investigated. The technical and economical feasibility of wind turbine installation is presented. The potential of wind power generation was statistically analyzed. The mean wind speed data of three-hour interval long term period from 1997 to 2005 was adopted and analyzed in order to determine the potential of wind power generation. The numerical values of the dimensionless Weibull shape parameter (k) and Weibull scale parameter (c) were determined. Annual values of "k" ranged from 1.725 to 1.930 with a mean value of 1.504, while annual values of "c" were in the range of 4.848-6.095 with a mean value of 5.314 (m/s). With the average wind power density of 100Â W/m2, it is found that the city is not an appropriate place for construction of large-scale wind power plants, but is suitable for employment of off-grid electrical and mechanical wind driven systems. An economic evaluation was done in order to show feasibility of installing small wind turbines. It was concluded that it costs 18 cents for 1Â kWÂ h which is 5 cents more than the market price. Each turbine of 10Â kW can supply power for icebox, washer, water pump, TV, lighting, electrical fan, charger, and air conditioning units for small houses. In order to utilize wind energy in the region, it is recommended to install small size wind turbines for electricity supply of public and public buildings and private houses.

Suggested Citation

  • Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:2545-2556

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Mirhosseini, M. & Sharifi, F. & Sedaghat, A., 2011. "Assessing the wind energy potential locations in province of Semnan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 449-459, January.
    2. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    3. Mostafaeipour, Ali & Mostafaeipour, Neda, 2009. "Renewable energy issues and electricity production in Middle East compared with Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1641-1645, August.
    4. Yu, Xiao & Qu, Hang, 2010. "Wind power in China--Opportunity goes with challenge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2232-2237, October.
    5. Ahmed, Ahmed Shata, 2010. "Wind energy as a potential generation source at Ras Benas, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2167-2173, October.
    6. Jamil, M. & Parsa, S. & Majidi, M., 1995. "Wind power statistics and an evaluation of wind energy density," Renewable Energy, Elsevier, vol. 6(5), pages 623-628.
    7. Weisser, D, 2003. "A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function," Renewable Energy, Elsevier, vol. 28(11), pages 1803-1812.
    8. Persaud, Shashi & Flynn, Damian & Fox, Brendan, 1999. "Potential for wind generation on the Guyana coastlands," Renewable Energy, Elsevier, vol. 18(2), pages 175-189.
    9. Ahmed Shata, A.S. & Hanitsch, R., 2006. "Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt," Renewable Energy, Elsevier, vol. 31(8), pages 1183-1202.
    10. Al-Nassar, W. & Alhajraf, S. & Al-Enizi, A. & Al-Awadhi, L., 2005. "Potential wind power generation in the State of Kuwait," Renewable Energy, Elsevier, vol. 30(14), pages 2149-2161.
    11. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    12. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    13. Ghobadian, Barat & Najafi, Gholamhassan & Rahimi, Hadi & Yusaf, T.F., 2009. "Future of renewable energies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 689-695, April.
    14. Mostafaeipour, Ali & Abarghooei, Hossein, 2008. "Harnessing wind energy at Manjil area located in north of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1758-1766, August.
    15. Mostafaeipour, Ali, 2010. "Feasibility study of harnessing wind energy for turbine installation in province of Yazd in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 93-111, January.
    16. Lu, Lin & Yang, Hongxing & Burnett, John, 2002. "Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics," Renewable Energy, Elsevier, vol. 27(1), pages 1-12.
    17. Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:2545-2556. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.