IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i5p3056-3085d35706.html
   My bibliography  Save this article

Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications

Author

Listed:
  • Abul Kalam Azad

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia)

  • Mohammad Golam Rasul

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia)

  • Talal Yusaf

    (National Centre for Engineering in Agriculture, Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

Abstract

The best Weibull distribution methods for the assessment of wind energy potential at different altitudes in desired locations are statistically diagnosed in this study. Seven different methods, namely graphical method (GM), method of moments (MOM), standard deviation method (STDM), maximum likelihood method (MLM), power density method (PDM), modified maximum likelihood method (MMLM) and equivalent energy method (EEM) were used to estimate the Weibull parameters and six statistical tools, namely relative percentage of error, root mean square error (RMSE), mean percentage of error, mean absolute percentage of error, chi-square error and analysis of variance were used to precisely rank the methods. The statistical fittings of the measured and calculated wind speed data are assessed for justifying the performance of the methods. The capacity factor and total energy generated by a small model wind turbine is calculated by numerical integration using Trapezoidal sums and Simpson’s rules. The results show that MOM and MLM are the most efficient methods for determining the value of k and c to fit Weibull distribution curves.

Suggested Citation

  • Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:3056-3085:d:35706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/5/3056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/5/3056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jowder, Fawzi A.L., 2009. "Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain," Applied Energy, Elsevier, vol. 86(4), pages 538-545, April.
    2. Ahmed Shata, A.S. & Hanitsch, R., 2008. "Electricity generation and wind potential assessment at Hurghada, Egypt," Renewable Energy, Elsevier, vol. 33(1), pages 141-148.
    3. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    4. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2006. "Wind power potential and characteristic analysis of the Pearl River Delta region, China," Renewable Energy, Elsevier, vol. 31(6), pages 739-753.
    5. Khadem, Shafiuzzaman Khan & Hussain, Muhtasham, 2006. "A pre-feasibility study of wind resources in Kutubdia Island, Bangladesh," Renewable Energy, Elsevier, vol. 31(14), pages 2329-2341.
    6. Kose, Ramazan & Ozgur, M. Arif & Erbas, Oguzhan & Tugcu, Abtullah, 2004. "The analysis of wind data and wind energy potential in Kutahya, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 277-288, June.
    7. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    8. Mirhosseini, M. & Sharifi, F. & Sedaghat, A., 2011. "Assessing the wind energy potential locations in province of Semnan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 449-459, January.
    9. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    10. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    11. Safari, Bonfils & Gasore, Jimmy, 2010. "A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda," Renewable Energy, Elsevier, vol. 35(12), pages 2874-2880.
    12. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    13. Belu, Radian & Koracin, Darko, 2009. "Wind characteristics and wind energy potential in western Nevada," Renewable Energy, Elsevier, vol. 34(10), pages 2246-2251.
    14. Chen, Z. & Blaabjerg, F., 2009. "Wind farm--A power source in future power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1288-1300, August.
    15. Acker, Thomas L. & Williams, Susan K. & Duque, Earl P.N. & Brummels, Grant & Buechler, Jason, 2007. "Wind resource assessment in the state of Arizona: Inventory, capacity factor, and cost," Renewable Energy, Elsevier, vol. 32(9), pages 1453-1466.
    16. Celik, Ali Naci, 2004. "A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey," Renewable Energy, Elsevier, vol. 29(4), pages 593-604.
    17. Justel, Ana & Peña, Daniel & Zamar, Rubén, 1997. "A multivariate Kolmogorov-Smirnov test of goodness of fit," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 251-259, October.
    18. Mathew, Sathyajith & Pandey, K.P. & Kumar.V, Anil, 2002. "Analysis of wind regimes for energy estimation," Renewable Energy, Elsevier, vol. 25(3), pages 381-399.
    19. Ahmed Shata, A.S. & Hanitsch, R., 2006. "Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt," Renewable Energy, Elsevier, vol. 31(8), pages 1183-1202.
    20. Lun, Isaac Y.F & Lam, Joseph C, 2000. "A study of Weibull parameters using long-term wind observations," Renewable Energy, Elsevier, vol. 20(2), pages 145-153.
    21. Hernandez-Escobedo, Quetzalcoatl & Manzano-Agugliaro, Francisco & Gazquez-Parra, Jose Antonio & Zapata-Sierra, Antonio, 2011. "Is the wind a periodical phenomenon? The case of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 721-728, January.
    22. Hernández-Escobedo, Q. & Manzano-Agugliaro, F. & Zapata-Sierra, A., 2010. "The wind power of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2830-2840, December.
    23. Yu, Xiao & Qu, Hang, 2010. "Wind power in China--Opportunity goes with challenge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2232-2237, October.
    24. Ahmed, Ahmed Shata, 2010. "Wind energy as a potential generation source at Ras Benas, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2167-2173, October.
    25. Weisser, D, 2003. "A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function," Renewable Energy, Elsevier, vol. 28(11), pages 1803-1812.
    26. Ilinca, Adrian & McCarthy, Ed & Chaumel, Jean-Louis & Rétiveau, Jean-Louis, 2003. "Wind potential assessment of Quebec Province," Renewable Energy, Elsevier, vol. 28(12), pages 1881-1897.
    27. Cruz-Peragon, F. & Palomar, J.M. & Casanova, P.J. & Dorado, M.P. & Manzano-Agugliaro, F., 2012. "Characterization of solar flat plate collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1709-1720.
    28. Ohunakin, Olayinka S., 2011. "Assessment of wind energy resources for electricity generation using WECS in North-Central region, Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1968-1976, May.
    29. Cadenas, Erasmo & Rivera, Wilfrido, 2007. "Wind speed forecasting in the South Coast of Oaxaca, México," Renewable Energy, Elsevier, vol. 32(12), pages 2116-2128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajamand, Sahbasadat, 2020. "Effect of demand response program of loads in cost optimization of microgrid considering uncertain parameters in PV/WT, market price and load demand," Energy, Elsevier, vol. 194(C).
    2. Mónica Borunda & Katya Rodríguez-Vázquez & Raul Garduno-Ramirez & Javier de la Cruz-Soto & Javier Antunez-Estrada & Oscar A. Jaramillo, 2020. "Long-Term Estimation of Wind Power by Probabilistic Forecast Using Genetic Programming," Energies, MDPI, vol. 13(8), pages 1-24, April.
    3. Jahangiri, Mehdi & Ghaderi, Reza & Haghani, Ahmad & Nematollahi, Omid, 2016. "Finding the best locations for establishment of solar-wind power stations in Middle-East using GIS: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 38-52.
    4. Alrashidi, Musaed & Rahman, Saifur & Pipattanasomporn, Manisa, 2020. "Metaheuristic optimization algorithms to estimate statistical distribution parameters for characterizing wind speeds," Renewable Energy, Elsevier, vol. 149(C), pages 664-681.
    5. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    6. Aliashim Albani & Mohd Zamri Ibrahim & Kim Hwang Yong, 2018. "Influence of the ENSO and Monsoonal Season on Long-Term Wind Energy Potential in Malaysia," Energies, MDPI, vol. 11(11), pages 1-18, November.
    7. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    8. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    9. Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
    10. Santiago Pindado & Carlos Pindado & Javier Cubas, 2017. "Fréchet Distribution Applied to Salary Incomes in Spain from 1999 to 2014. An Engineering Approach to Changes in Salaries’ Distribution," Economies, MDPI, vol. 5(2), pages 1-19, May.
    11. Katinas, Vladislovas & Marčiukaitis, Mantas & Gecevičius, Giedrius & Markevičius, Antanas, 2017. "Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania," Renewable Energy, Elsevier, vol. 113(C), pages 190-201.
    12. Akdağ, Seyit Ahmet & Güler, Önder, 2018. "Alternative Moment Method for wind energy potential and turbine energy output estimation," Renewable Energy, Elsevier, vol. 120(C), pages 69-77.
    13. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    14. Junjie Lu & Jinquan Huang & Feng Lu, 2017. "Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle," Energies, MDPI, vol. 10(1), pages 1-15, January.
    15. Khandaker Dahirul Islam & Thanansak Theppaya & Fida Ali & Jompob Waewsak & Tanita Suepa & Juntakan Taweekun & Teerawet Titseesang & Kuaanan Techato, 2021. "Wind Energy Analysis in the Coastal Region of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-18, September.
    16. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    17. Soulouknga, M.H. & Doka, S.Y. & N.Revanna, & N.Djongyang, & T.C.Kofane,, 2018. "Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution," Renewable Energy, Elsevier, vol. 121(C), pages 1-8.
    18. Olaofe, Z.O., 2018. "Review of energy systems deployment and development of offshore wind energy resource map at the coastal regions of Africa," Energy, Elsevier, vol. 161(C), pages 1096-1114.
    19. Hanifa Teimourian & Mahmoud Abubakar & Melih Yildiz & Amir Teimourian, 2022. "A Comparative Study on Wind Energy Assessment Distribution Models: A Case Study on Weibull Distribution," Energies, MDPI, vol. 15(15), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    2. Wu, Jie & Wang, Jianzhou & Chi, Dezhong, 2013. "Wind energy potential assessment for the site of Inner Mongolia in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 215-228.
    3. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    4. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    5. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    6. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.
    7. Akpınar, Adem, 2013. "Evaluation of wind energy potentiality at coastal locations along the north eastern coasts of Turkey," Energy, Elsevier, vol. 50(C), pages 395-405.
    8. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    9. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    10. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    11. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    12. Shoaib, Muhammad & Siddiqui, Imran & Amir, Yousaf Muhammad & Rehman, Saif Ur, 2017. "Evaluation of wind power potential in Baburband (Pakistan) using Weibull distribution function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1343-1351.
    13. Diaf, S. & Notton, G., 2013. "Technical and economic analysis of large-scale wind energy conversion systems in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 37-51.
    14. de Araujo Lima, Laerte & Bezerra Filho, Celso Rosendo, 2010. "Wind energy assessment and wind farm simulation in Triunfo – Pernambuco, Brazil," Renewable Energy, Elsevier, vol. 35(12), pages 2705-2713.
    15. Kwami Senam A. Sedzro & Adekunlé Akim Salami & Pierre Akuété Agbessi & Mawugno Koffi Kodjo, 2022. "Comparative Study of Wind Energy Potential Estimation Methods for Wind Sites in Togo and Benin (West Sub-Saharan Africa)," Energies, MDPI, vol. 15(22), pages 1-28, November.
    16. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    17. Katinas, Vladislovas & Marčiukaitis, Mantas & Gecevičius, Giedrius & Markevičius, Antanas, 2017. "Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania," Renewable Energy, Elsevier, vol. 113(C), pages 190-201.
    18. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    19. Belabes, B. & Youcefi, A. & Guerri, O. & Djamai, M. & Kaabeche, A., 2015. "Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1245-1255.
    20. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:3056-3085:d:35706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.