IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v138y2020ics0301421519307815.html
   My bibliography  Save this article

A comprehensive model for individuals’ acceptance of smart energy technology – A meta-analysis

Author

Listed:
  • Gimpel, Henner
  • Graf, Vanessa
  • Graf-Drasch, Valerie

Abstract

Individuals' use of smart energy technology – i.e., technology that increases energy efficiency or increases the integration of renewable energy sources – holds great potential to solve the energy-related climate problem. However, individuals' current uptake of smart energy technology is low. If policymakers are to successfully address this issue, it is vital that they understand the determinants of individuals' smart energy technology adoption. Hence, this paper provides a comprehensive adoption model for smart energy technology, including data from over 4k individuals in Europe, Asia, and North America involved in various technological contexts and phases of diffusion. A meta-analysis identifies Attitude and Performance Expectancy as the primary determinants of individuals’ smart energy technology adoption. Further, results show that Environmental Concern influences all other determinants. Implications for research and policymakers are discussed.

Suggested Citation

  • Gimpel, Henner & Graf, Vanessa & Graf-Drasch, Valerie, 2020. "A comprehensive model for individuals’ acceptance of smart energy technology – A meta-analysis," Energy Policy, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421519307815
    DOI: 10.1016/j.enpol.2019.111196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519307815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.111196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Ritu Agarwal & Jayesh Prasad, 1998. "A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology," Information Systems Research, INFORMS, vol. 9(2), pages 204-215, June.
    3. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    4. Agarwal, Sumit & Satyanarain, Rengarajan & Sing, Tien Foo & Vollmer, Derek, 2016. "Effects of construction activities on residential electricity consumption: Evidence from Singapore's public housing estates," Energy Economics, Elsevier, vol. 55(C), pages 101-111.
    5. Robert G. Hollands, 2008. "Will the real smart city please stand up?," City, Taylor & Francis Journals, vol. 12(3), pages 303-320, December.
    6. Bin Zhang & Paul A. Pavlou & Ramayya Krishnan, 2018. "On Direct vs. Indirect Peer Influence in Large Social Networks," Information Systems Research, INFORMS, vol. 29(2), pages 292-314, June.
    7. Chang, Youngho & Fang, Zheng & Li, Yanfei, 2016. "Renewable energy policies in promoting financing and investment among the East Asia Summit countries: Quantitative assessment and policy implications," Energy Policy, Elsevier, vol. 95(C), pages 427-436.
    8. Gerpott, Torsten J. & Paukert, Mathias, 2013. "Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany," Energy Policy, Elsevier, vol. 61(C), pages 483-495.
    9. Harjanne, Atte & Korhonen, Janne M., 2019. "Abandoning the concept of renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 330-340.
    10. Bhati, Abhishek & Hansen, Michael & Chan, Ching Man, 2017. "Energy conservation through smart homes in a smart city: A lesson for Singapore households," Energy Policy, Elsevier, vol. 104(C), pages 230-239.
    11. Sabiölla Hosseini & Leonhard Frank & Gilbert Fridgen & Sebastian Heger, 2018. "Do Not Forget About Smart Towns," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(3), pages 243-257, June.
    12. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    13. Robert G. Hollands, 2015. "Critical interventions into the corporate smart city," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 8(1), pages 61-77.
    14. Poortinga, Wouter & Steg, Linda & Vlek, Charles & Wiersma, Gerwin, 2003. "Household preferences for energy-saving measures: A conjoint analysis," Journal of Economic Psychology, Elsevier, vol. 24(1), pages 49-64, February.
    15. Tobias Brandt & Wolf Ketter & Lutz M. Kolbe & Dirk Neumann & Richard T. Watson, 2018. "Smart Cities and Digitized Urban Management," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(3), pages 193-195, June.
    16. Girod, Bastien & Mayer, Sebastian & Nägele, Florian, 2017. "Economic versus belief-based models: Shedding light on the adoption of novel green technologies," Energy Policy, Elsevier, vol. 101(C), pages 415-426.
    17. Mauricio Marrone & Mara Hammerle, 2018. "Smart Cities: A Review and Analysis of Stakeholders’ Literature," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(3), pages 197-213, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luiz Philipi Calegari & Guilherme Luz Tortorella & Diego Castro Fettermann, 2023. "Getting Connected to M-Health Technologies through a Meta-Analysis," IJERPH, MDPI, vol. 20(5), pages 1-33, February.
    2. Wang, Bo & Yang, Zihan & Le Hoa Pham, Thi & Deng, Nana & Du, Heran, 2023. "Can social impacts promote residents’ pro-environmental intentions and behaviour: Evidence from large-scale demand response experiment in China," Applied Energy, Elsevier, vol. 340(C).
    3. Qin, Yong & Xu, Zeshui & Wang, Xinxin & Škare, Marinko, 2022. "Green energy adoption and its determinants: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Marimuthu, Malliga & D'Souza, Clare & Shukla, Yupal, 2022. "Integrating community value into the adoption framework: A systematic review of conceptual research on participatory smart city applications," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Große-Kreul, Felix, 2022. "What will drive household adoption of smart energy? Insights from a consumer acceptance study in Germany," Utilities Policy, Elsevier, vol. 75(C).
    6. Ion Popa & Marian Mihai Cioc & Stefan Catalin Pop & Daniel Botez & Marius-Ioan Pantea, 2023. "Aligning Public Policy with REPowerEU Program Objectives by Adopting EESS Solutions: A Technology Acceptance Model Approach," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 660-660, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girod, Bastien & Mayer, Sebastian & Nägele, Florian, 2017. "Economic versus belief-based models: Shedding light on the adoption of novel green technologies," Energy Policy, Elsevier, vol. 101(C), pages 415-426.
    2. Munan Li, 2019. "Visualizing the studies on smart cities in the past two decades: a two-dimensional perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 683-705, August.
    3. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    4. El Barachi, May & Salim, Taghreed Abu & Nyadzayo, Munyaradzi W. & Mathew, Sujith & Badewi, Amgad & Amankwah-Amoah, Joseph, 2022. "The relationship between citizen readiness and the intention to continuously use smart city services: Mediating effects of satisfaction and discomfort," Technology in Society, Elsevier, vol. 71(C).
    5. Bernd W. Wirtz & Wilhelm M. Müller & Florian W. Schmidt, 2021. "Digital Public Services in Smart Cities – an Empirical Analysis of Lead User Preferences," Public Organization Review, Springer, vol. 21(2), pages 299-315, June.
    6. WeiYu Ji & Edwin H. W. Chan, 2019. "Critical Factors Influencing the Adoption of Smart Home Energy Technology in China: A Guangdong Province Case Study," Energies, MDPI, vol. 12(21), pages 1-24, November.
    7. Constance Carr & Markus Hesse, 2020. "When Alphabet Inc. Plans Toronto’s Waterfront: New Post-Political Modes of Urban Governance," Urban Planning, Cogitatio Press, vol. 5(1), pages 69-83.
    8. Peng Cheng & Zhe Ouyang & Yang Liu, 0. "The effect of information overload on the intention of consumers to adopt electric vehicles," Transportation, Springer, vol. 0, pages 1-20.
    9. Grégoire Wallenborn & Catherine Rousseau & Karine Thollier, 2006. "Détermination de profils de ménages pour une utilisation plus rationnelle de l’energie," ULB Institutional Repository 2013/192217, ULB -- Universite Libre de Bruxelles.
    10. Yu Wang & Shanyong Wang & Jing Wang & Jiuchang Wei & Chenglin Wang, 2020. "An empirical study of consumers’ intention to use ride-sharing services: using an extended technology acceptance model," Transportation, Springer, vol. 47(1), pages 397-415, February.
    11. Alalwan, Ali Abdallah & Baabdullah, Abdullah M. & Rana, Nripendra P. & Tamilmani, Kuttimani & Dwivedi, Yogesh K., 2018. "Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust," Technology in Society, Elsevier, vol. 55(C), pages 100-110.
    12. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    13. Riffat Ara Zannat Tama & Md Mahmudul Hoque & Ying Liu & Mohammad Jahangir Alam & Mark Yu, 2023. "An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh," Agriculture, MDPI, vol. 13(2), pages 1-22, February.
    14. Kummitha, Rama Krishna Reddy & Crutzen, Nathalie, 2019. "Smart cities and the citizen-driven internet of things: A qualitative inquiry into an emerging smart city," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 44-53.
    15. Zhang, Wenqing & Liu, Liangliang, 2022. "Exploring non-users' intention to adopt ride-sharing services: Taking into account increased risks due to the COVID-19 pandemic among other factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 180-195.
    16. Guo Li & Wenling Liu & Zhaohua Wang & Mengqi Liu, 2017. "An empirical examination of energy consumption, behavioral intention, and situational factors: evidence from Beijing," Annals of Operations Research, Springer, vol. 255(1), pages 507-524, August.
    17. Bireswar Dutta & Hsin-Ginn Hwang, 2021. "Consumers Purchase Intentions of Green Electric Vehicles: The Influence of Consumers Technological and Environmental Considerations," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    18. Jeeyeon Jeong & Yaeri Kim & Taewoo Roh, 2021. "Do Consumers Care About Aesthetics and Compatibility? The Intention to Use Wearable Devices in Health Care," SAGE Open, , vol. 11(3), pages 21582440211, August.
    19. Ari-Veikko Anttiroiko, 2016. "City-as-a-Platform: The Rise of Participatory Innovation Platforms in Finnish Cities," Sustainability, MDPI, vol. 8(9), pages 1-31, September.
    20. Nieves García-de-Frutos & José Manuel Ortega-Egea & Javier Martínez-del-Río, 2018. "Anti-consumption for Environmental Sustainability: Conceptualization, Review, and Multilevel Research Directions," Journal of Business Ethics, Springer, vol. 148(2), pages 411-435, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421519307815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.