IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v83y2019icp254-263.html
   My bibliography  Save this article

Including bottom-up emission abatement technologies in a large-scale global economic model for policy assessments

Author

Listed:
  • Weitzel, Matthias
  • Saveyn, Bert
  • Vandyck, Toon

Abstract

Economic models with global and economy-wide coverage can be useful tools to assess the impact of energy and environmental policies, but often disregard finer technological details of emission abatement measures. We present a framework for integrating and preserving detailed bottom-up information for end-of-pipe abatement technologies into a large-scale numerical model. Using an activity analysis approach, we capture non-linearities that typically characterise bottom-up abatement cost curves derived from discrete technology options. The model framework is flexible and can accommodate greenhouse gas and air pollution abatement, as well as modelling carbon capture and storage (CCS). Here, we illustrate this approach for non-CO2 greenhouse gases in a large-scale Computable General Equilibrium (CGE) model and compare results with a fitted marginal abatement curve and with completely excluding non-CO2 greenhouse gases. Results show that excluding non-CO2 abatement options leads to an overestimation of the total abatement cost. When the detailed bottom-up technology implementation is replaced by a fitted smooth marginal abatement cost curve, significant over- or underestimations of abatement levels and costs can emerge for particular pollutant-sector-region combinations.

Suggested Citation

  • Weitzel, Matthias & Saveyn, Bert & Vandyck, Toon, 2019. "Including bottom-up emission abatement technologies in a large-scale global economic model for policy assessments," Energy Economics, Elsevier, vol. 83(C), pages 254-263.
  • Handle: RePEc:eee:eneeco:v:83:y:2019:i:c:p:254-263
    DOI: 10.1016/j.eneco.2019.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319302166
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    3. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    4. Kiuila, O. & Rutherford, T.F., 2013. "Piecewise smooth approximation of bottom–up abatement cost curves," Energy Economics, Elsevier, vol. 40(C), pages 734-742.
    5. John P. Weyant, Francisco C. de la Chesnaye, and Geoff J. Blanford, 2006. "Overview of EMF-21: Multigas Mitigation and Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-32.
    6. Kiuila, O. & Rutherford, T.F., 2013. "The cost of reducing CO2 emissions: Integrating abatement technologies into economic modeling," Ecological Economics, Elsevier, vol. 87(C), pages 62-71.
    7. Golub, Alla & Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2009. "The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry," Resource and Energy Economics, Elsevier, vol. 31(4), pages 299-319, November.
    8. Peter Rafaj & Wolfgang Schöpp & Peter Russ & Chris Heyes & Markus Amann, 2013. "Co-benefits of post-2012 global climate mitigation policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 801-824, August.
    9. Carlo Orecchia & Ramiro Parrado, 2013. "Including non-CO2 Emissions in the European ETS," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, October.
    10. Bollen, Johannes, 2015. "The value of air pollution co-benefits of climate policies: Analysis with a global sector-trade CGE model called WorldScan," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 178-191.
    11. Vrontisi, Zoi & Abrell, Jan & Neuwahl, Frederik & Saveyn, Bert & Wagner, Fabian, 2016. "Economic impacts of EU clean air policies assessed in a CGE framework," Environmental Science & Policy, Elsevier, vol. 55(P1), pages 54-64.
    12. P. Capros & Denise Van Regemorter & Leonidas Paroussos & P. Karkatsoulis & C. Fragkiadakis & S. Tsani & I. Charalampidis & Tamas Revesz, 2013. "GEM-E3 Model Documentation," JRC Working Papers JRC83177, Joint Research Centre (Seville site).
    13. Kimon Keramidas & Alban Kitous & Jacques Despres & Andreas Schmitz & Ana Diaz Vazquez & Silvana Mima & Peter Russ & Tobias Wiesenthal, 2017. "POLES-JRC model documentation," JRC Working Papers JRC107387, Joint Research Centre (Seville site).
    14. Rive, Nathan, 2010. "Climate policy in Western Europe and avoided costs of air pollution control," Economic Modelling, Elsevier, vol. 27(1), pages 103-115, January.
    15. Taran Faehn and Elisabeth T. Isaksen, 2016. "Diffusion of Climate Technologies in the Presence of Commitment Problems," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    16. Alban Kitous & Kimon Keramidas & Toon Vandyck & Bert Saveyn & Rita Van Dingenen & Joe Spadaro & Mike Holland, 2017. "Global Energy and Climate Outlook 2017: How climate policies improve air quality," JRC Working Papers JRC107944, Joint Research Centre (Seville site).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    2. Marc Vielle, 2020. "Navigating various flexibility mechanisms under European burden-sharing," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 267-313, April.

    More about this item

    Keywords

    Marginal abatement costs; Climate policy; CGE model; End-of-pipe abatement; Hybrid modelling; Non-CO2 greenhouse gases;

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:83:y:2019:i:c:p:254-263. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.