IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v141y2025ics0140988324008144.html
   My bibliography  Save this article

Energy organization sentiment and oil return forecast

Author

Listed:
  • Jeong, Minhyuk
  • Ahn, Kwangwon

Abstract

This study investigates the role of energy organization sentiments for oil return forecasts. First, we construct organization sentiment indexes using ChatGPT, a large language model, which enables us to extract sentimental information from the oil market reports issued by the International Energy Agency (IEA) and the Organization of the Petroleum Exporting Countries (OPEC). We found that organization sentiment indexes have a significantly negative impact on future oil price changes, and the information in OPEC's sentiment dominates that in the IEA's sentiment. The significance survives in models controlled by well-known oil pricing factors, e.g., oil market fundamentals, financial factors, and consumer and investor sentiments. The organization sentiment indexes Granger cause changes in oil production decisions, where oil production is identified as the channel through which the organization sentiment indexes influence future crude oil returns. We also found that the impact of organization sentiments is time-varying depending on investor sentiments and the market returns but mostly remains significant for both the in-sample fit and out-of-sample forecasts. Oil market participants, e.g., oil consumers, producers, and investors, can refer to the proposed organization sentiment indexes while trading crude oil to improve their utility. The inclusion of OPEC sentiment yields 2.40 % of certainty equivalent return gain, which is increased to 2.56 % with the addition of IEA sentiment. The findings of this study imply that the IEA should review its role and influence to maintain energy security effectively, and OPEC should track the profitability of its production adjustments.

Suggested Citation

  • Jeong, Minhyuk & Ahn, Kwangwon, 2025. "Energy organization sentiment and oil return forecast," Energy Economics, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324008144
    DOI: 10.1016/j.eneco.2024.108105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324008144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.108105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coleman, Les, 2012. "Explaining crude oil prices using fundamental measures," Energy Policy, Elsevier, vol. 40(C), pages 318-324.
    2. Miller, Richard G., 2011. "Future oil supply: The changing stance of the International Energy Agency," Energy Policy, Elsevier, vol. 39(3), pages 1569-1574, March.
    3. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    4. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    5. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    6. Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
    7. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    8. Deeney, Peter & Cummins, Mark & Dowling, Michael & Bermingham, Adam, 2015. "Sentiment in oil markets," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 179-185.
    9. Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
    10. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    11. Nathan S Balke & Xin Jin & Mine Yücel, 2024. "The Shale Revolution and the Dynamics of the Oil Market," The Economic Journal, Royal Economic Society, vol. 134(662), pages 2252-2289.
    12. Robert K. Kaufmann, Stephane Dees, Pavlos Karadeloglou and Marcelo Sanchez, 2004. "Does OPEC Matter? An Econometric Analysis of Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 67-90.
    13. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    14. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    15. Ratti, Ronald A. & Vespignani, Joaquin L., 2015. "OPEC and non-OPEC oil production and the global economy," Energy Economics, Elsevier, vol. 50(C), pages 364-378.
    16. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    17. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    18. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    19. Jeffrey A. Frankel, 2008. "The Effect of Monetary Policy on Real Commodity Prices," NBER Chapters, in: Asset Prices and Monetary Policy, pages 291-333, National Bureau of Economic Research, Inc.
    20. Demirer, Rıza & Ferrer, Román & Shahzad, Syed Jawad Hussain, 2020. "Oil price shocks, global financial markets and their connectedness," Energy Economics, Elsevier, vol. 88(C).
    21. Massimo Guidolin & Manuela Pedio, 2021. "Forecasting commodity futures returns with stepwise regressions: Do commodity-specific factors help?," Annals of Operations Research, Springer, vol. 299(1), pages 1317-1356, April.
    22. W. Anthony Bryant & Joseph Macri, 2005. "Does sentiment explain consumption?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 29(1), pages 97-110, March.
    23. Li, Jieyi & Qian, Shuangyue & Li, Ling & Guo, Yuanxuan & Wu, Jun & Tang, Ling, 2024. "A novel secondary decomposition method for forecasting crude oil price with twitter sentiment," Energy, Elsevier, vol. 290(C).
    24. Caldara, Dario & Cavallo, Michele & Iacoviello, Matteo, 2019. "Oil price elasticities and oil price fluctuations," Journal of Monetary Economics, Elsevier, vol. 103(C), pages 1-20.
    25. Atems, Bebonchu & Melichar, Mark, 2019. "Do Global Crude Oil Market Shocks Have Differential Effects On Us Regions?," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1978-2008, July.
    26. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    27. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    28. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    29. Christian Gillitzer & Nalini Prasad, 2018. "The Effect of Consumer Sentiment on Consumption: Cross-Sectional Evidence from Elections," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(4), pages 234-269, October.
    30. Qingxiang Han & Mengxi He & Yaojie Zhang & Muhammad Umar, 2023. "Default return spread: A powerful predictor of crude oil price returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1786-1804, November.
    31. Park, Jungwook & Ratti, Ronald A., 2008. "Oil price shocks and stock markets in the U.S. and 13 European countries," Energy Economics, Elsevier, vol. 30(5), pages 2587-2608, September.
    32. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    33. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    34. Gao, Lin & Hitzemann, Steffen & Shaliastovich, Ivan & Xu, Lai, 2022. "Oil volatility risk," Journal of Financial Economics, Elsevier, vol. 144(2), pages 456-491.
    35. Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
    36. Loutia, Amine & Mellios, Constantin & Andriosopoulos, Kostas, 2016. "Do OPEC announcements influence oil prices?," Energy Policy, Elsevier, vol. 90(C), pages 262-272.
    37. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, , vol. 30(2), pages 179-206, April.
    38. Wang, Yudong & Wu, Chongfeng, 2012. "Energy prices and exchange rates of the U.S. dollar: Further evidence from linear and nonlinear causality analysis," Economic Modelling, Elsevier, vol. 29(6), pages 2289-2297.
    39. Sari, Ramazan & Soytas, Ugur & Hacihasanoglu, Erk, 2011. "Do global risk perceptions influence world oil prices?," Energy Economics, Elsevier, vol. 33(3), pages 515-524, May.
    40. Orawan Ratanapakorn & Subhash Sharma, 2007. "Dynamic analysis between the US stock returns and the macroeconomic variables," Applied Financial Economics, Taylor & Francis Journals, vol. 17(5), pages 369-377.
    41. Sadorsky, Perry, 1999. "Oil price shocks and stock market activity," Energy Economics, Elsevier, vol. 21(5), pages 449-469, October.
    42. Jones, Charles M & Kaul, Gautam, 1996. "Oil and the Stock Markets," Journal of Finance, American Finance Association, vol. 51(2), pages 463-491, June.
    43. Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
    44. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    45. Harri, Ardian & Nalley, Lanier & Hudson, Darren, 2009. "The Relationship between Oil, Exchange Rates, and Commodity Prices," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 41(2), pages 501-510, August.
    46. Schmidbauer, Harald & Rösch, Angi, 2012. "OPEC news announcements: Effects on oil price expectation and volatility," Energy Economics, Elsevier, vol. 34(5), pages 1656-1663.
    47. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    48. Working, Holbrook, 1960. "Speculation on Hedging Markets," Food Research Institute Studies, Stanford University, Food Research Institute, vol. 1(2), pages 1-36.
    49. Ratti, Ronald A. & Vespignani, Joaquin L., 2016. "Oil prices and global factor macroeconomic variables," Energy Economics, Elsevier, vol. 59(C), pages 198-212.
    50. Amine Loutia & Constantin Mellios & Kostas Andriosopoulos, 2016. "Do OPEC announcements influence oil prices?," Post-Print hal-03968824, HAL.
    51. Hongyang Yang & Xiao-Yang Liu & Christina Dan Wang, 2023. "FinGPT: Open-Source Financial Large Language Models," Papers 2306.06031, arXiv.org.
    52. Gallo, Andres & Mason, Paul & Shapiro, Steve & Fabritius, Michael, 2010. "What is behind the increase in oil prices? Analyzing oil consumption and supply relationship with oil price," Energy, Elsevier, vol. 35(10), pages 4126-4141.
    53. Sadorsky, Perry, 2000. "The empirical relationship between energy futures prices and exchange rates," Energy Economics, Elsevier, vol. 22(2), pages 253-266, April.
    54. Mark J. Flannery & Aris A. Protopapadakis, 2002. "Macroeconomic Factors Do Influence Aggregate Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 751-782.
    55. Li, Xin & Umar, Muhammad & Zhu, Cun-Bin & Oprean-Stan, Camelia, 2023. "Can geopolitical risk stably predict crude oil prices? A multi-dimensional perspective," Resources Policy, Elsevier, vol. 85(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    2. Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
    3. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    4. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    5. Dai, Zhifeng & Kang, Jie & Hu, Yangli, 2021. "Efficient predictability of oil price: The role of number of IPOs and U.S. dollar index," Resources Policy, Elsevier, vol. 74(C).
    6. Qingxiang Han & Mengxi He & Yaojie Zhang & Muhammad Umar, 2023. "Default return spread: A powerful predictor of crude oil price returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1786-1804, November.
    7. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Zhu, Bo, 2021. "Oil shocks and stock market volatility: New evidence," Energy Economics, Elsevier, vol. 103(C).
    8. Lu, Xinjie & Ma, Feng & Wang, Tianyang & Wen, Fenghua, 2023. "International stock market volatility: A data-rich environment based on oil shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 184-215.
    9. Dai, Zhifeng & Kang, Jie, 2021. "Bond yield and crude oil prices predictability," Energy Economics, Elsevier, vol. 97(C).
    10. Tian, Guangning & Peng, Yuchao & Meng, Yuhao, 2023. "Forecasting crude oil prices in the COVID-19 era: Can machine learn better?," Energy Economics, Elsevier, vol. 125(C).
    11. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    12. Lycheva, Maria & Mironenkov, Alexey & Kurbatskii, Alexey & Fantazzini, Dean, 2022. "Forecasting oil prices with penalized regressions, variance risk premia and Google data," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 28-49.
    13. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    14. Ziadat, Salem Adel & McMillan, David G. & Herbst, Patrick, 2022. "Oil shocks and equity returns during bull and bear markets: The case of oil importing and exporting nations," Resources Policy, Elsevier, vol. 75(C).
    15. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023. "Commodity futures return predictability and intertemporal asset pricing," Journal of Commodity Markets, Elsevier, vol. 31(C).
    16. Li, Kaixin & Zhang, Zhikai & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil returns with oil-related industry ESG indices," Journal of Commodity Markets, Elsevier, vol. 36(C).
    17. Zhenhua Liu & Zhihua Ding & Tao Lv & Jy S. Wu & Wei Qiang, 2019. "Financial factors affecting oil price change and oil-stock interactions: a review and future perspectives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 207-225, January.
    18. Yu, Yue & Wang, Jianzhou & Jiang, He & Lu, Haiyan, 2025. "How to manage a multifactor-driven crude oil market more effectively? A revisit based on the multiple criteria perspective," Resources Policy, Elsevier, vol. 100(C).
    19. Yu, Dan & Chen, Chuang & Wang, Yudong & Zhang, Yaojie, 2023. "Hedging pressure momentum and the predictability of oil futures returns," Economic Modelling, Elsevier, vol. 121(C).
    20. Zhang, Yaojie & He, Mengxi & Wang, Yudong & Liang, Chao, 2023. "Global economic policy uncertainty aligned: An informative predictor for crude oil market volatility," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1318-1332.

    More about this item

    Keywords

    Organization sentiment; IEA; OPEC; Crude oil return; ChatGPT;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • F53 - International Economics - - International Relations, National Security, and International Political Economy - - - International Agreements and Observance; International Organizations
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324008144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.