IDEAS home Printed from
   My bibliography  Save this article

Monitoring multivariate variance changes


  • Pape, Katharina
  • Wied, Dominik
  • Galeano, Pedro


We propose a model-independent multivariate sequential procedure to monitor changes in the vector of componentwise unconditional variances in a sequence of p-variate random vectors. The asymptotic behavior of the detector is derived and consistency of the procedure stated. A detailed simulation study illustrates the performance of the procedure confronted with different types of data generating processes. We conclude with an application to the log returns of a group of DAX listed assets.

Suggested Citation

  • Pape, Katharina & Wied, Dominik & Galeano, Pedro, 2016. "Monitoring multivariate variance changes," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 54-68.
  • Handle: RePEc:eee:empfin:v:39:y:2016:i:pa:p:54-68 DOI: 10.1016/j.jempfin.2016.08.007

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Christian M. Hafner, 2003. "Fourth Moment Structure of Multivariate GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 26-54.
    3. Aue, Alexander & Horváth, Lajos & Reimherr, Matthew L., 2009. "Delay times of sequential procedures for multiple time series regression models," Journal of Econometrics, Elsevier, vol. 149(2), pages 174-190, April.
    4. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    5. Jan J. J. Groen & George Kapetanios & Simon Price, 2013. "Multivariate Methods For Monitoring Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 250-274, March.
    6. Amado, Cristina & Teräsvirta, Timo, 2014. "Modelling changes in the unconditional variance of long stock return series," Journal of Empirical Finance, Elsevier, vol. 25(C), pages 15-35.
    7. Nicolai Bissantz & Daniel Ziggel & Kathrin Bissantz, 2011. "An Empirical Study of Correlation and Volatility Changes of Stock Indices and their Impact on Risk Figures," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 4(4), pages 127-141, August.
    8. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    9. Rasmus S. Pedersen & Anders Rahbek, 2014. "Multivariate variance targeting in the BEKK–GARCH model," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 24-55, February.
    10. Alexander Aue & Lajos Horváth & Marie Hušková & Piotr Kokoszka, 2006. "Change-point monitoring in linear models," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 373-403, November.
    11. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037, June.
    12. Hansen, Bruce E., 1991. "GARCH(1, 1) processes are near epoch dependent," Economics Letters, Elsevier, vol. 36(2), pages 181-186, June.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    15. Berkes, Istv n & Gombay, Edit & Horv th, Lajos & Kokoszka, Piotr, 2004. "SEQUENTIAL CHANGE-POINT DETECTION IN GARCH(p,q) MODELS," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1140-1167, December.
    16. G. William Schwert, 2011. "Stock Volatility During the Recent Financial Crisis," NBER Working Papers 16976, National Bureau of Economic Research, Inc.
    17. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    18. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
    19. Dominik Wied & Matthias Arnold & Nicolai Bissantz & Daniel Ziggel, 2012. "A new fluctuation test for constant variances with applications to finance," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1111-1127, November.
    20. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    21. Wied, Dominik & Krämer, Walter & Dehling, Herold, 2012. "Testing For A Change In Correlation At An Unknown Point In Time Using An Extended Functional Delta Method," Econometric Theory, Cambridge University Press, vol. 28(03), pages 570-589, June.
    22. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    23. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Multivariate sequences; Online detection; Threshold function; Variance changes;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:39:y:2016:i:pa:p:54-68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.