IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v189y2015i2p492-506.html
   My bibliography  Save this article

Generalized ARMA models with martingale difference errors

Author

Listed:
  • Zheng, Tingguo
  • Xiao, Han
  • Chen, Rong

Abstract

The analysis of non-Gaussian time series has been studied extensively and has many applications. Many successful models can be viewed as special cases or variations of the generalized autoregressive moving average (GARMA) models of Benjamin et al. (2003), where a link function similar to that used in generalized linear models is introduced and the conditional mean, under the link function, assumes an ARMA structure. Under such a model, the ‘transformed’ time series, under the same link function, assumes an ARMA form as well. Unfortunately, unless the link function is an identity function, the error sequence defined in the transformed ARMA model is usually not a martingale difference sequence. In this paper we extend the GARMA model in such a way that the resulting ARMA model in the transformed space has a martingale difference sequence as its error sequence. The benefit of such an extension are four-folds. It has easily verifiable conditions for stationarity and ergodicity; its Gaussian pseudo-likelihood estimator is consistent; standard time series model building tools are ready to use; and its MLE’s asymptotic distribution can be established. We also proposes two new classes of non-Gaussian time series models under the new framework. The performance of the proposed models is demonstrated with simulated and real examples.

Suggested Citation

  • Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
  • Handle: RePEc:eee:econom:v:189:y:2015:i:2:p:492-506
    DOI: 10.1016/j.jeconom.2015.03.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407615001189
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    3. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    4. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    5. Wong, Wing-Keung & Bian, Guorui, 2005. "Estimating parameters in autoregressive models with asymmetric innovations," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 61-70, January.
    6. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    7. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Kuan Chung-Ming & Lee Wei-Ming, 2004. "A New Test of the Martingale Difference Hypothesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(4), pages 1-26, December.
    10. Douc, R. & Doukhan, P. & Moulines, E., 2013. "Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2620-2647.
    11. Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2009. "Estimating stochastic volatility models using daily returns and realized volatility simultaneously," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2404-2426, April.
    12. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    13. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Generalized spectral tests for the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 134(1), pages 151-185, September.
    14. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    15. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models I: time series," LSE Research Online Documents on Economics 57580, London School of Economics and Political Science, LSE Library.
    16. Startz, Richard, 2008. "Binomial Autoregressive Moving Average Models With an Application to U.S. Recessions," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 1-8, January.
    17. Bondon, Pascal, 2009. "Estimation of autoregressive models with epsilon-skew-normal innovations," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1761-1776, September.
    18. Richard A. Davis, 2003. "Observation-driven models for Poisson counts," Biometrika, Biometrika Trust, vol. 90(4), pages 777-790, December.
    19. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 525-554.
    20. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    21. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models II: spatial processes," LSE Research Online Documents on Economics 5416, London School of Economics and Political Science, LSE Library.
    22. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    23. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    24. Qiwei Yao & Peter J. Brockwell, 2006. "Gaussian Maximum Likelihood Estimation For ARMA Models. I. Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 857-875, November.
    25. Konstantinos Fokianos & Roland Fried, 2010. "Interventions in INGARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 210-225, May.
    26. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    27. Andréa Rocha & Francisco Cribari-Neto, 2009. "Beta autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 529-545, November.
    28. Yao, Qiwei & Brockwell, Peter J., 2006. "Gaussian maximum likelihood estimation for ARMA models I: time series," LSE Research Online Documents on Economics 5825, London School of Economics and Political Science, LSE Library.
    29. Richard A. Davis & Rongning Wu, 2009. "A negative binomial model for time series of counts," Biometrika, Biometrika Trust, vol. 96(3), pages 735-749.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling, Shiqing & McAleer, Michael & Tong, Howell, 2015. "Frontiers in Time Series and Financial Econometrics: An overview," Journal of Econometrics, Elsevier, vol. 189(2), pages 245-250.
    2. repec:eee:jmvana:v:158:y:2017:i:c:p:31-46 is not listed on IDEAS
    3. Ling, S. & McAleer, M.J. & Tong, H., 2015. "Frontiers in Time Series and Financial Econometrics," Econometric Institute Research Papers EI 2015-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:189:y:2015:i:2:p:492-506. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.