IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Testing for unit roots in the possible presence of multiple trend breaks using minimum Dickey–Fuller statistics

Listed author(s):
  • Harvey, David I.
  • Leybourne, Stephen J.
  • Taylor, A.M. Robert

Trend breaks appear to be prevalent in macroeconomic time series, and unit root tests therefore need to make allowance for these if they are to avoid the serious effects that unmodelled trend breaks have on power. Carrion-i-Silvestre et al. (2009) propose a pre-test-based approach which delivers near asymptotically efficient unit root inference both when breaks do not occur and where multiple breaks occur, provided the break magnitudes are fixed. Unfortunately, however, the fixed magnitude trend break asymptotic theory does not predict well the finite sample power functions of these tests, and power can be very low for the magnitudes of trend breaks typically observed in practice. In response to this problem we propose a unit root test that allows for multiple breaks in trend, obtained by taking the infimum of the sequence (across all candidate break points in a trimmed range) of local GLS detrended augmented Dickey–Fuller-type statistics. We show that this procedure has power that is robust to the magnitude of any trend breaks, thereby retaining good finite sample power in the presence of plausibly-sized breaks. We also demonstrate that, unlike the OLS detrended infimum tests of Zivot and Andrews (1992), these tests display no tendency to spuriously reject in the limit when fixed magnitude trend breaks occur under the unit root null.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304407613000894
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 177 (2013)
Issue (Month): 2 ()
Pages: 265-284

as
in new window

Handle: RePEc:eee:econom:v:177:y:2013:i:2:p:265-284
DOI: 10.1016/j.jeconom.2013.04.012
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
  2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
  3. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
  4. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Simple, Robust, And Powerful Tests Of The Breaking Trend Hypothesis," Econometric Theory, Cambridge University Press, vol. 25(04), pages 995-1029, August.
  5. Mohitosh Kejriwal & Pierre Perron, 2010. "A sequential procedure to determine the number of breaks in trend with an integrated or stationary noise component," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 305-328, 09.
  6. Perron, Pierre & Qu, Zhongjun, 2007. "A simple modification to improve the finite sample properties of Ng and Perron's unit root tests," Economics Letters, Elsevier, vol. 94(1), pages 12-19, January.
  7. Stephan Pfaffenzeller & Paul Newbold & Anthony Rayner, 2007. "A Short Note on Updating the Grilli and Yang Commodity Price Index," World Bank Economic Review, World Bank Group, vol. 21(1), pages 151-163.
  8. Harris, David & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Testing For A Unit Root In The Presence Of A Possible Break In Trend," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1545-1588, December.
  9. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
  10. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
  11. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
  12. Fabio Busetti & Andrew Harvey, 2003. "Further Comments On Stationarity Tests In Series With Structural Breaks At Unknown Points," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 137-140, 03.
  13. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Testing for Shifts in Trend With an Integrated or Stationary Noise Component," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 369-396.
  14. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2012. "Unit root testing under a local break in trend," Journal of Econometrics, Elsevier, vol. 167(1), pages 140-167.
  15. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
  16. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
  17. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
  18. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
  19. Kurozumi, Eiji, 2002. "Testing for stationarity with a break," Journal of Econometrics, Elsevier, vol. 108(1), pages 63-99, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:177:y:2013:i:2:p:265-284. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.