IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

GLS detrending, efficient unit root tests and structural change

Listed author(s):
  • Perron, Pierre
  • Rodriguez, Gabriel

We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(03)00090-3
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 115 (2003)
Issue (Month): 1 (July)
Pages: 1-27

as
in new window

Handle: RePEc:eee:econom:v:115:y:2003:i:1:p:1-27
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window

  1. G. William Schwert, 1988. "Tests For Unit Roots: A Monte Carlo Investigation," NBER Technical Working Papers 0073, National Bureau of Economic Research, Inc.
  2. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
  3. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, Oxford University Press, vol. 102(4), pages 797-814.
  4. Donald W.K. Andrews, 1990. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Cowles Foundation Discussion Papers 943, Cowles Foundation for Research in Economics, Yale University.
  5. Campbell, J.Y. & Perron, P., 1991. "Pitfalls and Opportunities: What Macroeconomics should know about unit roots," Papers 360, Princeton, Department of Economics - Econometric Research Program.
  6. Perron, P. & Ng, S., 1996. "An Autoregressive Spectral Density Estimator at Frequency Zero for Nonstationarity Tests," Cahiers de recherche 9611, Universite de Montreal, Departement de sciences economiques.
  7. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
  8. Lawrence J. Christiano & Martin Eichenbaum, 1989. "Unit Roots in Real GNP: Do We Know, and Do We Care?," NBER Working Papers 3130, National Bureau of Economic Research, Inc.
  9. John Y. Campbell & N. Gregory Mankiw, 1987. "Are Output Fluctuations Transitory?," The Quarterly Journal of Economics, Oxford University Press, vol. 102(4), pages 857-880.
  10. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
  11. Alok Bhargava, 1986. "On the Theory of Testing for Unit Roots in Observed Time Series," Review of Economic Studies, Oxford University Press, vol. 53(3), pages 369-384.
  12. Baillie, Richard T & Bollerslev, Tim, 1989. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 297-305, July.
  13. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  14. Zivot, Eric & Andrews, Donald W K, 1992. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 251-270, July.
  15. Mankiw, N. Gregory & Campbell, John, 1987. "Permanent and Transitory Components in Macroeconomic Fluctuations," Scholarly Articles 3207697, Harvard University Department of Economics.
  16. Christiano, Lawrence J, 1992. "Searching for a Break in GNP," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 237-250, July.
  17. Sargan, John Denis & Bhargava, Alok, 1983. "Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk," Econometrica, Econometric Society, vol. 51(1), pages 153-174, January.
  18. DeJong, David N. & Nankervis, John C. & Savin, N. E. & Whiteman, Charles H., 1992. "The power problems of unit root test in time series with autoregressive errors," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 323-343.
  19. Matthew D. Shapiro & Mark W. Watson, 1988. "Sources of Business Cycle Fluctuations," Cowles Foundation Discussion Papers 870, Cowles Foundation for Research in Economics, Yale University.
  20. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
  21. Schmidt, P. & Phillips, P.C.B., 1990. "Testing forUnit Root in the Presence of Deterministic Trends," Papers 8904, Michigan State - Econometrics and Economic Theory.
  22. Perron, P, 1988. "The Great Crash, The Oil Price Shock And The Unit Root Hypothesis," Papers 338, Princeton, Department of Economics - Econometric Research Program.
  23. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
  24. Graham Elliott & Thomas J. Rothenberg & James H. Stock, 1992. "Efficient Tests for an Autoregressive Unit Root," NBER Technical Working Papers 0130, National Bureau of Economic Research, Inc.
  25. Serena Ng & Pierre Perron, 1997. "Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power," Boston College Working Papers in Economics 369, Boston College Department of Economics, revised 01 Sep 2000.
  26. Perron, P. & Ng, S., 1994. "Useful Modifications to Some Unit Root Tests with Dependent Errors and Their Local Asymptotic Properties," Cahiers de recherche 9427, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  27. Vogelsang, Timothy J., 1997. "Wald-Type Tests for Detecting Breaks in the Trend Function of a Dynamic Time Series," Econometric Theory, Cambridge University Press, vol. 13(06), pages 818-848, December.
  28. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
  29. Evans, G B A & Savin, N E, 1981. "Testing for Unit Roots: 1," Econometrica, Econometric Society, vol. 49(3), pages 753-779, May.
  30. Dufour, Jean-Marie & King, Maxwell L., 1991. "Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors," Journal of Econometrics, Elsevier, vol. 47(1), pages 115-143, January.
Full references (including those not matched with items on IDEAS)

This item is featured on the following reading lists or Wikipedia pages:

  1. ADF-GLS test in Wikipedia English ne '')

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:115:y:2003:i:1:p:1-27. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.